
fill level

water level

pressure

temperature

flow

visualization signal converter

sensoric

DAL-111

Direct voltage / direct current 0-20 mA, 4-20 mA, 0-10 VDC

Technical features:

- red display of -19999... 99999 Digits (optional: green, orange or blue display)
- minimal installation depth: 70 mm without plug-in screw terminal
- min/max-memory
- 30 additional adjustable supporting points
- display flashing at threshold value exceedance / threshold value undercut
- zero-key for triggering of Hold, Tara
- permanent min/max-value recording
- volume metering (Totaliser)
- mathematic functions like reciprocal value, square root, squaring or rounding
- setpoint generator
- sliding average determination
- brightness control
- programming interlock via access code
- protection class IP65 at the front side
- plug-in screw terminal
- optional: 2 relay outputs
- optional: sensor supply or analog output
- optional: galvanic isolated digital input
- accessories: PC-based configuration-kit PM-TOOL with CD \& USB-adapter for devices without keypad and for a simple adjustment of standard devices

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Order code

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Functions and operation description 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat 이 8
Value assigment for triggering of the sin
5.3. Programming interlock "RUM" 11
Activation/Deactivation of the programming interlock or change into the professional level respectively back into the flat operation level
5.4. Extended parameterisation (professional operation level) 12
5.4.1. Signal input parameter „,MP" 12Value assigment for triggering of the singal input incl. linearisation
5.4.2. General device parameter „FCT" 15
Higher device functions like Hold, Tara, min/max permanent, setpoint function respectively nominal value function, average determination, brightness control, as well as the control of the digital input and the keyboard configuration
5.4.3. Safety parameter „COD" 19
Assignment of user and master code for locking or access to certain parameters like e.g. analog output and alarms, etc.
5.4.4. Analog output parameter „OUT" 20
Analog output functions
5.4.5. Relay functions „REL" 22
Parameter for the definition of the setpoints
5.4.6. Alarm parameter „RL1...RL4" 24
Activator and dependencies of the alarms
5.4.7. Totaliser (Volume metering) „TOT" 26
Parameter for calculation of the sum function
6. Reset to factory settings 27
Reset of the parameter to the factory default settings
7. Alarms / Relays 28
Function principle of the switching outputs
8. Sensor alignment 29
Function diagram for sensors with existing trimming resistor
9. Technical data 30
10. Safety advices 32
11. Error elimination 33

1. Brief description

The panel meter DAL-111 is a 5-digit device for direct current/direct voltage signals and a visual threshold value monitoring via the display. The configuration happens via four front keys or via the optional PC software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameters and can be unlocked again by an individual code. Optional the following functions are available: a supply for the sensor, a digital input for triggering of Hold (Tara) or an analog output for further processing in the equipment.
By use of the two optional galvanic isolated setpoints, free adjustable threshold values can be controlled and reported to a superior master display.
The electrical connection is carried out on the back side via plug-in terminals.
Selectable functions like e.g. the request of the min/max-value, an average determination of the measuring signals, a nominal preset respectively setpoint preset, a direct change of threshold value in operation mode and additional measuring supporting points for linearisation complete the modern device concept.

2. Assembly

Please read the Safety advices on page 32 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm!

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type DAL-111x000S with a supply of 115 VAC
Type DAL-111x000S with a supply of 230 VAC
Type DAL-111x000S with a supply of 10-30 VDC

Relay option

Connection examples:

Below you find some connection examples, which demonstrate some practical applications. Devices with current inputs / voltage inputs, without sensor supply.

DAL-111 in combination with a
2-wire-sensor 4-20mA

DAL-111 in combination with a 3-wire-sensor 0/4-20mA

DAL-111 in combination with a
3-wire-sensor 0-10V

DAL-111 devices

With current / voltage input in combination with a 24 VDC sensor supply.

2-wire sensor: 4-20 mA

3-wire sensor: 0-20 mA

3-wire sensor: $0-10 \mathrm{~V}$

DAL-111 with digital input in combination with 24 VDC sensor supply

DAL-111 with digital input and external voltage supply source

4. Function and operation description

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level is for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise "PROF" under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise "ULOL,, under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with $[\mathrm{P}]$ and thus safed. By pressing the [O]-key (zero-key) it leads to a break-off of the value input and to a change into the menu level. All adjustments are safed automatically by the device and it changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu level	P	Change to parameterisation level and deposited values.
	$\triangle \square$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisation level	P	To confirm the changes made at the parameterization level.
	$\Delta \square$	Adjustment of the value / the setting.
	O	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\triangle \nabla$	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover
(0) Stop
(Value selection (+)
Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and safed on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching-on

Once the installation is complete, you can start the device by applying the voltage supply. First, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\begin{gathered}\text { 8 } 888\end{gathered}$ indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Menu level

Menu level	Parameterisation level	
	Hysteresis for limit values， $\mathrm{HY}-\mathrm{l}$ ： Default： 0 The difference to the threshold value that causes the delay of the actuation of the alarm，is defined by the hysteresis．	
	Function if display falls below／exceeds limit value， $\mathrm{FU}-\mathrm{l}$ ： Default：HIGH Lローい \square \square The limit value undercut can be selected with LOUU（LOW＝lower limit value）and limit value exceedance can be selected with HIGH（HIGH＝upper limit value）．If e．g．limit value 1 is on a switching threshold of 100 and occupied with function $H G H$ ，the alarm will be activated by reaching the threshold．If the limit value is allocated to LOU，an alarm will be activated by undercut of the threshold．	
	Threshold values／limit values，Ll－z： Default： 3000 This limit value defines the threshold，that leads to an activation／deactivation of the alarm．	
HS	Hysteresis for threshold values， $\mathrm{HY}-2$ ： Default： 0 The difference to the threshold value that causes the delay of the actuation of the alarm，is defined by the hysteresis．	
	Function if display falls below／exceeds limit value， $\mathrm{FU}-\mathrm{Z}$ Default：HIGH H ILH L L！ The limit value undercut can be selected with LOUU（LOW＝lower limit value）and limit value exceedance can be selected with $H I G H$（HIGH＝upper limit value）．If e．g．limit value 1 is on a switching threshold of 100 and occupied with function $H \\| G H$ ，the alarm will be activated by reaching the threshold．If the limit value is allocated to LOU，an alarm will be activated by undercut of the threshold．	

Menu level	Parameterisation level
LIGQE	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code is set (>0000), all parameters are locked for the user, if $L O C$ has been selected under menu item RUM. By pressing [P] for approx. 3 seconds in operation mode, the message CODE is shown in the display. Enter the preset U.CODE to get access to the for the user unlocked set of parameters. The code needs to be entered bevor each try of parameterisation, as long as all parameters are released by the $\operatorname{R} . \operatorname{CODE}$ (Master code) again.
$\begin{aligned} & \text { RLDGE } \\ & \|\nabla \Delta\| \mid \end{aligned}$	Master code (4-digit number-combination free available), R.CODE: Default: 1234 After LOC has been activated under menu item RUM, this code can be used for unlocking all parameters. By pressing $[P]$ for approx. 3 seconds in operation mode, the message $C O D E$ is shown in the display and offer the user access to all parameters by entering R.CODE. While leaving this parameterisation it can be unlocked permanently under RUM by selecting ULOC or PROF. So, at an anew pressing of $[P]$ in operating mode, an anew entereing of the code is not needed.
5.3. Programming interlock	
Tr	Activation / Deactivation of the programming interlock or completion of the standard parameterisation with change into menu group level (complete function volume), RUM: Default: ULOC $\text { ULDE } \nabla \square \text { LDL } \Delta \text { PraF } \triangle \text { P }$ Choose between the deactivated key lock ULOC (works setting), the activated key lock LOC, or the menu group level PROF with the navigation keys [\mathbf{A}] [\mathbf{V}]. Confirm the selection with [P]. After this, the display confirms the settings with "-..-", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the CODE (works setting 1234) that appears using [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] plus [P] to unlock the keyboard. FRIL appears if the input is wrong. To parameterise further functions, PROF needs to be set. The device confirms this setting with ," $\quad \cdots$, , and changes automatically into operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It stays as long activated as ULOC is entered in menu group RUMY, thus the display is set back in standard parameterisation again.

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

There are several measuring input options: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $0-10 \mathrm{VDC}$ signals as works calibration (without application of the sensor signal) and SENSU (voltage) or SENSR (current) as sensor calibration (with the sensor applied). Confirm the selection with [P] and the display switches back to menu level.
Setting the measuring range end value, EMD:
Default: 10000

Menu level	Parameterisation level
	Number of additional setpoints, SPCT: Default: 00 \square \square \square \square 30 additional setpoints can be defined to the initial- and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
-1 5.	Display values for setpoints, $D 15.01$... $D 15.30$: Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value/offset, one is asked at the end if a calibration shall be activated.
	Analog values for setpoints, IMP.OI ... IMP.30: \square B \square \square \square \square The setpoints are always preset according to the selected input signal mA/V. The demanded analog values can be freely adjusted in ascending order.
	Device undercut, DIUMD: Default: -19999 With this function the device undercut (\qquad _) can be defined on a definite value. Exception is input type 4-20 $\mathbf{~ m A}$, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.
	Display overflow, I.OUE: Default: 99999
$\begin{aligned} & \square \mid-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .,-MP-".

5.4.2. General device parameters

Arithmetics, ARITH:
Default: MO

With this function the calculated value, not the measurand, is shown in the display. With NO, no calulation is deposited. With $[\mathrm{P}]$ the selection is confirmed and the device changes into menu level.

Sliding average determination, RVG:
Default: 10

Fi吅	$\square \square \square$	$1 \square \square \triangle$
	Under this menu item, the number of measurements that need to be averaged are preset. The averaging time results from the product of measuring time $5 E C$ and the averaged measurements RVG. With selection of RVG in menu level DISPL the result is shown in the display and evaluated when entered in the alarm RLI-RL4 or the analog output OUTPT.	
Zero point slowdown, ZERO: Default: 00		
$\|\nabla \Delta\|$	At the zero point slowdown, a value range around the zero point can be preset, so the display shows a zero. If e.g. 10 is set, the display would show a zero in the value range from -10 to +10 ; below continue with -11 and beyond with +11 . The maximum adjustable range of value is 99 .	

Menu level	Parameterisation level
	Solid contstant value, CONST: Default: 0 The constant value can be evaluated like the current measurand via the alarms or the analog output. The decimal place cannot be changed for this value and is taken over from the current measurand. So, with this value a setpoint generator can be realised via the analog output. Furthermore it can be used as calculated difference. At this the constant value needs to be subtracted from the current measurand and the difference is evaluated in the alerting or via the analog output. Thus regulation can be displayed quite easy with this parameterisation.
$\begin{aligned} & \hline \square ロ \Pi \Pi \mid \\ & \nabla \triangle \Delta \mid \end{aligned}$	Minimum constant value, con.m: Default: -19999 The minimum constant value is selected and adjusted from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the highest digit. After the last digit the display changes back into menu level.
$\begin{aligned} & \text { Ean } \cap \square \\ & \|\nabla \Delta\| \end{aligned}$	Maximum constant value, cOM.MR: Default: 99999 The maximum constant value is selected and adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$][\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be adjusted on the highest digit. After the last digit the display changes back into menu level.
	Display, DISPL: Default: RCTUR With this function the current measurand, the min/max-value, the totaliser, the processcontrolled hold-value, the sliding average value, the constant value or the difference between constant value and current value can be allocated to the display. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \qquad \mid L H L \\ & \nabla \triangle \Delta \mid \end{aligned}$	Brightness control, LIGHT: Default: 10 The brightness of the display can be adjusted in 11 levels from $00=$ very dark to $10=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.

Menu level	Parameterisation level
$\begin{aligned} & F L R 5 H \\ & \|\nabla \Delta\| \end{aligned}$	Display flashing, FLASH: Default: MO A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MD, no flashing is allocated.
LRSL $\uparrow \nabla$	Assignment (deposit) of key functions, TRST: Default: NO For operation mode, special functions can be deposited on the navigation keys [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$], in particular this function was made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory is activated with EHTR, all measured min/max-values are safed during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L I .12$ or $L 1.34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRA the device is set temporarily on a parameterised value. The device acknowledges the correct taring with 00000 in the display. SET.TR switches into the offset value and can be adjusted via the navigation keys. Via TOTAL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], the device acknowledges this with 00000 in the display. By allocation on EHT.RE the min/max-memory is deleted. At RCTUR the measuring value is shown for approx. 7 seconds, after this the device switches back on the parameterised display value. With LIGHT the brightness of the display is adjusted. This setting is not safed and gets lost during a restart of the device. Via selection LI.I, Ll.1-2, LI.1-3, Ll. $1-4$ threshold values can be addressed via the navigation keys; they can be changed digit per digit or taken over by pushing the [P]-key. The adjustment is taken over directly, an excisting limit value monitoring and the current measurement will not be influenced by this. If $M O$ is selected, the navigation keys are without any function in the operation mode.

Menu level	Parameterisation level
$\begin{aligned} & \text { LREL.' } \\ & \nabla \nabla \Delta \mid \end{aligned}$	Special function [O]-key, TRST.4: Default: MO For the operation mode, special functions can be deposited on the [O]-key. Activate this function by pressing the key. With TRRR the device is set temporarily on zero and safed permanently as offset. The device acknowledges the correct taring by showing 00000 in the display. SET.TR switches into the offset value and can be adjusted via the navigation keys. Via TOTAL the current value of the totaliser can be displayed for approx. 7 seconds, after this the device switches back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], the device acknowledges this with 00000 in the display. EHT.RE deletes the min/max-memory. If HOLD has been selected, the moment can be held constant by pressing the [O]-key and is updated by releasing the key. Advice: HOLD is activated only, if HOLD was selected under parameter DISPL. ACTUR shows the measurand for approx. 7 seconds, after this the device switches back on the parameterised display value. The same goes for AVG, here the sliding average value will be displayed. Via SE.CAL a sensor calibration is done by pressing the zero key, the operating diagram is shown in chapter 8 . The constant value COMST can be called up via the key or adjusted digit per digit. At RL-7...RL-4 an output can be set and therewith can e.g. a setpoint adjustment be done. If MO is selected, the [O]-key is without any function in the operation mode.
	Special function digital input, DIG.IN: Default: MO For the operation mode, the above shown parameters can be laid on the optional digital input, too. Functions description see TRST.4.
$\begin{aligned} & \mid r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-FCT-".

5.4.3. Safety parameters

Menu level	Parameterisation level
rEL	Back to menu group level, RET:
$\mid \nabla \Delta$	With [P] the selection is confirmed and the device changes into menu group level „-COD-".

5.4.4. Analog output parameters

Menu level	Parameterisation level
$\begin{aligned} & \nabla_{\perp L} L E L \\ & \|\nabla \Delta\| \end{aligned}$	Selection reference analog output, OUTPT: Default: AcTuß The analog output signal can refer to different functions, in detail this are the current measurand, $\mathrm{min} / \mathrm{max}$-value or totaliser function/sum-function, the sliding average value, the constant value or the difference between the current value and the constant value. If $H O L D$ is selected the signal of the analog output will be hold and processed just after deactivation of HOLD. With [P] the selection is confirmed and the device changes into menu level.
But.r $\uparrow \Delta$	Selection analog output, OUT.RR: Default: 4-20 $\square-10 \triangle \square-2 \square \Delta \sqrt{\nabla} \square-2 \square \Delta$ There are 3 output signals availabe: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. With this function the demanded signal can be selected.
BuL.En	Setting up the final value of the analog output, out.EM: Default: 10000 The final value can be adjusted from the smallest to the largest digit with [$\mathbf{\Delta}$] [$\mathbf{V}]$. Confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level.

Menu level

5.4.5. Relay functions

Menu level	Parameterisation level		
$\begin{aligned} & \Gamma \square \Pi- \\ & \|\nabla \Delta\| \end{aligned}$	Alarms for r Default： 8.1 R. it The allocatio alarms can b With $[\mathrm{P}]$ the	lay 1 ，com－： R． Z of the alarms to rela chosen．This parame ection is confirmed a	happens via this parameter，one alarm or a group of can only be selected if LOGIC was selected under REL－l． he device changes into menu level．
	Alerting relay Default：RL－2 \qquad ［RL． Each setpoin at activated available in th other selected activated／dea front of the d the semi－auto sensor calibr final value．V	2, REL－2： DF LRL．E optional）can be linke Rarms RLI／4 or deactiv menu level LOG－1 and functions，these two p ivated，in this case th ice．The parameters atic calibration（Chap ion，at CRL．OF during ［ $[\mathrm{P}]$ the selection is	RL－nil．．．RL－n4 \square Dn ERL P via 4 alarms（by default）．This can either be inserted d alarms RLMI／4．If LOGIC is selected，logical links are Ioll．Access to these two menu levels is via LOGIC，at all meters are overleaped．Via OM／DFF the setpoints can be output and the setpoint display are set／not set on the CRL．OF and CALLEM can only be used in accordance with 8．Sensor alignment）．At CAL the relay switches during calibration and at CALLEM during the calibration of the rmed and the device changes into menu level．
	Logic relay 2 Default：∇R \square Here，the sw	LOG－2： nロー ching behavior of the functions with inclus	日の日 \square の日の日 lay is defined via a logic link，the following schema of RL－1 and RL－2：This parameter can only be selected if
	$\square 1$	A1 v ${ }^{\text {2 }}$	As soon as a selected alarm is activated，the relay operates．Equates to operating current principle．
	のロー	$\overline{A 1 \vee A 2}=\overline{A 1} \wedge \overline{A 2}$	The relay operates only，if no selected alarm is active．Equates to quiescent current principle．
	アпロ	A1 \wedge a2	The relay operates only，if all selected alarms are active．
	のアのロ	$\overline{A 1 \wedge A 2}=\overline{A 1} \vee \overline{A 2}$	As soon as a selected alarm is not activated，the relay operates．
	With［P］the selection is confirmed and the device changes into menu level．		

5.4.6. Alarm parameters

The dependency of alarm 1 can be related to special functions, in detail these are the current measurand, the min/max-value, the totaliser value/sum value, the sliding average value, the constant value or the difference between the current measurand and the constant value. If HOLD is selected the alarm is hold and processed just after deactivation of HOLD. EHTER causes the dependency either by pressing the [0]-key on the front of the housing or by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level.

Example:

By using the maximum value RLRRM. $1=$ MRX. $V R$ in combination with a threshold monitoring $F U-1=H I G H$, an alarm confirmation can be realised. Use the navigation keys or the 4th key for confirmation.

Menu level	Parameterisation level
$\begin{aligned} & \begin{array}{\|l\|l\|l} \hline L & i & - \\ \hline \nabla & \Delta \end{array} \\ & \qquad \nabla \end{aligned}$	Threshold values / limits, $\mathrm{L}-\mathrm{T}$: Default: 2000 This limit value defines the threshold, that leads to an activation / deactivation of the alarm.
$\begin{aligned} & \hline H-1 \\ & \nabla \Delta \mid \end{aligned}$	Hysteresis for threshold values, $\mathrm{Hy}-\mathrm{f}$: Default: 00000 The difference to the threshold value that causes the delay of the actuation of the alarm, is defined by the hysteresis.
$\begin{aligned} & F L-1 \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value exceedance/undercut, $F U-1$: Default: $\mathrm{H} G \mathrm{H}$ $\text { HILH } \mathrm{LO} \mathrm{~L}$ The limit value undercut can be selected with LOUU (LOW = lower limit value) and limit value exceedance can be selected with HIGH (HIGH = upper limit value). If e.g. limit value 1 is on a switching threshold of 100 and occupied with function $H I G H$, the alarm will be activated by reaching the threshold. If the limit value is allocated to LOU, an alarm will be activated by undercut of the threshold.
	Switching-on delay, TOM-7: Default: 000 For limit value 1 one can preset a delayed switching-on of $0-100$ seconds.
$\begin{aligned} & \boxed{L \square I}-i \\ & \|\nabla \triangle\| \end{aligned}$	Switching-off delay, TOF-7: Default: 000 $\square \mathbb{\square} \square \square \Delta_{\square}^{\square}$ For limit value 1 one can preset a delayed switching-off of 0-100 seconds.
$\begin{aligned} & \square-E E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-ALI-".

5.4.7. Totaliser (Volume metering)

Menu level	Parameterisation level
LaLR	The totaliser makes measurements on a time base of e.g. I/h possible, at this the scaled input signal is integrated by a time and steadily (select STERD) or temporarily (select TEMP) safed Choose the quick storage for numerous filling processes and the permanent storage fo consumption measurings. At the permanent storage STERD, the current cumulative value is safed at each totaliser reset and furthermore, every 30 minutes in the non-volatile memory o the device. If ofF is selected, the function is de-activated. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \text { E. } \angle R 5 E \\ & A \nabla \Delta \mid \end{aligned}$	Time base, T.BRSE: Default: SEC \qquad 5EL \qquad Min hour P Under this parameter the time base of the measurement can be preset in seconds, minutes or hours.
$\begin{aligned} & F B \\ & \nabla \nabla \end{aligned}$	Totaliser factor, FACTO: Default: IED Here the factor $\left(10^{0} \ldots 10^{6}\right)$ respectively the divisor for the internal calculation of the measuring value is assigned.
LoL.OL	Setting up the decimal point for the totaliser, TOT.DT: Default: 0 DTOUD The decimal point of the device can be adjusted with the navigation keys [$\mathbf{\Delta}$] [$\mathbf{V}]$. With $[P]$ the selection is confirmed and the device changes into menu level.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Programming interlock:

6. Reset to factoty settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This sets the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input or the [O]-key.
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a shortterm exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Sensor calibration offset / final value

The device is equipped with a semi-automatic sensor calibration (SEMSL/SEMSR). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the 4th key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

9. Technical data

Housing				
Dimensions	$96 \times 48 \times 70 \mathrm{~mm}$ (BxHxD)			
	$96 \times 48 \times 89 \mathrm{~mm}$ (BxHxD) including plug-in terminal			
Panel cut-out	$92.0^{+0.8} \times 45.0^{+0.6} \mathrm{~mm}$			
Wall thickness	up to 15 mm			
Fixing	screw elements			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (Front), IP00 (Back side)			
Weight	approx. 200 g			
Connection	plug-in terminal; wire cross-section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	14 mm			
Segment colour	red (optional green, orange or blue)			
Display range	-19999 up to 99999			
Setpoints	one LED per setpoint			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the top			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring error	Digit
min. -22...max. 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1 \% of measuring range	± 1
min. -12...max. 12 VDC	$0-10 \mathrm{VDC}$	$\sim 200 \mathrm{k} \Omega$	0.1% of measuring range	± 1
Digital input	<2.4 V OFF, 10 V ON, max. 30 VDC$\mathrm{R}_{1} \sim 5 \mathrm{k} \Omega$			
Accuracy				
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$			
Measuring time	$0.1 . .10 .0$ seconds			
Measuring principle	U/F-conversion			
Resolution	approx. 18 bit at 1 s measuring time			

Output	
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA}$; $10 \mathrm{VDC} / 20 \mathrm{~mA}$
Analog output	0/4-20 mA / burden 3500hm; 0-10 VDC / burden 10kOhm, 16 bit
Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at $5 \mathrm{AAC}, 5$ ADC ohm resistive burden 10×10^{6} mechanically Diversification according to DIN EN50178 / Characteristics according to DIN EN60255
Power supply	230 VAC $\pm 10 \%$ max. 10 VA 10-30 VDC galv. isolated, max. 4 VA
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0^{\circ} \ldots .50^{\circ} \mathrm{C}$
Storing temperature	$-20^{\circ} \ldots 80^{\circ} \mathrm{C}$
Weathering resistance	relative humidity $0-80 \%$ on years average without dew
EMV	EN 61326
CE-sign	Conformity according to directive 2004/108/EG
Safety standard	According to low voltage directive 2006/95/EG EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advice and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The DAL-111--device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or cause damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The DAL-111-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word "HELP" lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	"ERRI" lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure that the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90 Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

