
fill level

water level

pressure

temperature

flow

visualization signal converter

sensoric

DAL-311

Direct current / direct voltage signals: 0/4-20 mA, 0-10 VDC

Technical features:

- red display of -19999... 99999 digits (optional: green, orange or blue)
- installation depth: 120 mm without plug-in terminal
- min/max memory
- 30 parameter driven supporting points
- display flashing at threshold value exceedance / undercut
- [O]-key (zero key) for triggering of Hold, Tara
- permanent min/max-value recording
- volume measurement (totaliser)
- mathematical functions like e.g. reciprocal value, square root, squaring or rounding
- setpoint generator
- sliding averaging
- brightness control
- programming interlock via access code
- protection class IP65 at the front
- plug-in screw terminal
- option: sensor supply
- option: galvanic isolated digital input
- option: 1 or 2 analog outputs
- option: 2 or 4 relay outputs or 8 PhotoMos outputs
- option: interface RS232 or RS485
- accessories: PC-based configuration kit PM-TOOL incl. CD and USB-adapter for devices without keypad and for a simple adjustment of standard devices

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Order code

Contents

1. Brief description 2
2. Assembly 3
3. Electrical connection 4
4. Description of function and operation 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8
Value assignment for the triggering of the signal input
5.3. Programming interlock „RUN" 11
Activation/Deactivation of the programming interlock or change into professional or flat operation level
5.4. Extended parametersation (professional operation level) 11
5.4.1. Signal input parameters „,MP، 11
Value assignment for the triggering of the signal input incl. linearisation
5.4.2. General device parameters „FCT، 15
Superior device functions like Hold, Tara, min/max permanent, setpoint value function / nominal value function, averaging, brightness control, as well as the control of the digital input and keyboard layout
5.4.3. Safety parameters „$C O \square^{"}$
Assignment of user and master code to lock or to receive access to defined parameters such as analog output and alarms, etc.19
5.4.4. Serial parameters „SER" 20
Parameters for interface definition
5.4.5. Analog output parameters „OUT" and „OUZ" 21
Analog output functions
5.4.6. Relay functions „REL" 24
Parameters for setpoint definition
5.4.7. Alarm parameters „RLI...RL4" 26
Actuator and dependencies of the alarms
5.4.8. Totaliser (Volume metering) „TOT" 28Parameters for calculation of the sum function
6. Reset to factory settings (default values) 29
Reset parameters onto the delivery state
7. Alarms / Relays 30
Functional principle of the switching outputs
8. Interfaces 31Connection RS232 and RS485
9. Sensor aligment 32
Diagram of functional sequences for sensors with existing adjustable resistor
10. Technical data 33
11. Safety advices 35
12. Error elimination 36

1. Brief description

The panel meter instrument DAL-311 is a 5-digit device for direct current / direct voltage signals and a visual threshold value monitoring via the display. The configuration happens via 4 keys at the front or via the optional PC software PM-TOOL. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional the following functions are available: a supply for the sensor, a digital input for triggering of Hold (Tara), two analog outputs and interfaces for further evaluating in the unit.
With help of the galvanic isolated setpoints (optional), free adjustable limit values can be controlled and reported to a superior master display.
The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, an averaging of the measuring signals, a nominal presetting or setpoint presetting, a direct threshold value regulation during operation mode and further measuring setpoints for linearisation, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 35 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!

3. Electrical connection

Type DAL-311x0x0S
Type DAL-311x0x0S
supply 10-40 VDC galv. isolated, 18-30 VAC
supply $100-240$ VAC, $D C \pm 10 \%$

Options:

Relay 1 and 2
Relay 3 and 4

8 PhotoMos outputs

Alternative to analog output 2

DAL-311x0x0S with digital input in combination with 24 VDC sensor supply

DAL-311x0x0S with digital input and external voltage source

Connection examples

Below please find some connection examples that show practical applications. For devices with current inputs / voltage inputs, without sensor supply.

DAL-311x0x0S in combination with a 2-wire-sensor 4-20 mA

DAL-311x0x0S in combination with a
3-wire-sensor 0/4-20 mA

DAL-311x0x0S in combination with a
3-wire-sensor 0-10 V

DAL-311 devices

With current respectively voltage input in combination with a 24 VDC sensor supply.

2-wire sensor 4-20 mA

3-wire sensor 0-20 mA

3-wire sensor 0-10 V

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level was designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PROF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, setpoint treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULOC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu-level	P	Change to parameterisation level and deposited values.
	$\triangle \square$	Keys for up and down navigation in the menu level.
	O	Change into operation mode.
Parameterisationlevel	P	To confirm the changes made at the parameterization level.
	$\triangle \square$	Adjustment of the value / the setting.
	O	Change into menu level or break-off in value input.
Menu-group-level	P	Change to menu level.
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	0	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover
(O) Stop
(Value selection (+)

- Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and an USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\begin{aligned} & 8 \\ & 8\end{aligned} 888$) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.

5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P] key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level	Parameterisation level
	Selection of the input signal, TYPE: Default: SEM5.U 5En5.R \triangle 『 Available as measuring input options are $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $0-10 \mathrm{VDC}$ signals as works calibration (without application of the sensor signal) and SEMSU (voltage) or SEMSA (current) as sensor calibration (with the sensor applied). Confirm the selection with [P] and the display switches back to menu level.
	Setting the end value of the measuring range, EMD: Default: 10000 Set the end value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. A minus sign can only be parameterised on the highest value digit. After the last digit, the display switches back to the menu level. If SENS was selected as input option, you can only select between MOCA and CRL. With MOCR, only the previously set display value is taken over, and with CAL, the device takes over both the display value and the analogue input value.
$\begin{aligned} & \square \cap F F 5 \\ & \|\nabla \Delta\| \end{aligned}$	Setting the start/offset value of the measuring range, OFFS: Default: 0 Enter the start/offset value from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If SENS was selected as input option, you can only select between MOCR and CRL. With MOCR, only the previously set display value is taken over, and with CAL, the device takes over both the display value and the analogue input value.

Menu level	Parameterisation level
$\begin{aligned} & \hline H \Xi-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values, Hy - l : Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & \|F\|-i \mid \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut / exceedance, $F U-1$: Default: HIGH A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function H HH, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOW, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
	The same applies to L--2 !
$\begin{aligned} & \angle I G \square G I \\ & \|\nabla \Delta \Delta\| \end{aligned}$	User code (4-digit number-combination, free available), U.CODE: Default: 0000 If this code was set (>0000), all parameters are locked for the user, if LOC has been selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE. The U.CODE needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the R.CODE (master code) unlocks all parameters again.
FiLadE $\|\nabla \triangle\|$	Master code (4-digit number-combination, free available), R.CODE: Default: 1234 All parameters can be unlocked with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows CODE and enables the user to reach all parameters by entering the R.CODE. Under RUM the parameterisation can be activated permanently by selecting $U L O C$ or $P R O F$, thus at an anew pushing of $[P]$ in operation mode, the code needs not to be entered again.

5.3. Programming interlock „RUM"

| Menu level | Parameterisation level |
| :--- | :--- | | Activation I deactivation of the programming lock or completion of the standard |
| :--- |
| parameterisation with change into menu group level (complete function range), RUM: |
| Default: ULOC |

5.4. Extended parameterisation (Professional operation level)

5.4.1. Signal input parameters

Menu level | Parameterisation level |
| :--- |
| |
| Default: SEMS.U |

Menu level	Parameterisation level					
	Rescaling the measuring input values, OFFR: Default: 0 With this function, you can rescale the input value of e.g. 3.5 mA (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.					
	Setting up the tare value/offset value, TRRA: Default: 0 The given value is added to the linearized value. In this way, the characteristic line can be shifted by the selected amount.					
$\uparrow \nabla \Delta$	Setting up the balance point, RDJ.PT: Default: 08000 The balance point for the final value can be chosen from the measuring range by SEMS.U with $0 . .10 \mathrm{~V}$ or SEMS. 8 with $0 . . .20 \mathrm{~mA}$ in \%. The preset 80.000% result from the widespread detuning of the melt pressure sensors.					
	Setting up the physical unit, UMIIT: Default: MO One can choose between the above shown physical units. It will be displayed on the 5th digit of the display.					
	Number of additional setpoints, SPCT: Default: 00 \square \square \square \square 30 additional setpoints can be defined to the initial- and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.					
	Under this parameter setpoints are defined according to their value. At the sensor calibration, like at final value / offset, one is asked at the end if a calibration shall be activated.					

Menu level	Parameterisation level	
	Analog values for setpoints, INP.OI ... INP.30: The setpoints are always set according to the selected input signal. The desired analog values can be freely parameterised in ascending order.	
	Device undercut, DIUMD: Default: -19999 With this function the device undercut (\qquad _) can be defined on a definite value. Exception is input type 4-20 $\mathbf{~ m A}$, it already shows undercut at a signal $<1 \mathrm{~mA}$, so a sensor failure is marked.	
$\begin{aligned} & \Delta \\| . D U E \\ & \|\nabla \Delta\| \end{aligned}$	Display overflow, DI.OUE: Default: 99999 With this function the display overflow (-----) can be defined on a definite value.	
	Input variable of process value, $5 / G . I T:$ Default: R.MERS RTERS \square 7.bu5 P With this parameter, the device can be controlled via the analog input signals R.MERS $=0-20 \mathrm{~mA}$, $4-20 \mathrm{~mA}$ or 0-10 VDC or via the digital signals of the interface m.BUS $=$ RS232/RS485 (Modbus protocol). With [P] the selection is confirmed and the device changes into menu level.	
$\begin{aligned} & \square \\ & \hline \nabla E L \\ & \nabla \Delta \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .-IMP-".	

5.4.2. General device parameters

Menu level	Parameterisation level
$\begin{aligned} & \text { ZErin } \\ & \nabla \Delta \Delta \mid \end{aligned}$	Zero point slowdown，ZERO： Default： 00 \square P \square 1 \square At the zero point slowdown，a value range around the zero point can be preset，so the display shows a zero．If e．g．a 10 is set，the display would show a zero in the value range from－10 to +10 ；below continue with -11 and beyond with +11 ．The maximum adjustable range of value is 99.
$\begin{aligned} & \operatorname{Ean} 5 L \\ & \|\nabla \Delta\| \mid \end{aligned}$	Definite contstant value，COMST： Default： 0 The constant value can be evaluated via the alarms or via the analog output，like the current measurand．The decimal place cannot be changed for this value and is taken over by the current measurand．Like this a setpoint generator can be realised via the analog output by this value．Furthermore it can be used for calculating the difference．At this the constant value is substracted from the current measurand and the difference is evaluated in the alerting or by the analog output．Thus regulations can be displayed quite easily．
$\begin{aligned} & \square \square \sqcap \Pi \mid \\ & \nabla \nabla \Delta \mid \end{aligned}$	Minimum constant value，COM．M： Default：－19999 The minimum constant value is adjusted from the smallest to the highest digit with the navigation keys［ \mathbf{A} ］［ \mathbf{V} ］and confirmed digit per digit with［P］．A minus sign can only be adjusted on the highest digit．After the last digit the display changes back into menu level．
	Maximum constant value，टОМ．円ค： Default： 99999 The maximum constant value is adjusted from the smallest to the highest digit with the navigation keys［ \mathbf{A} ］［ \mathbf{V} ］and confirmed digit per digit with［P］．A minus sign can only be adjusted on the highest digit．After the last digit the display changes back into menu level．
	Display，DISPL： Default：RCTUR With this function the current measurand，min／max value，totaliser value or the process－ controlled Hold－value can be allocated to the display．With［P］the selection is confirmed and the device changes into menu level．

Menu level	Parameterisation level
	Brightness control, LIGHT: Default: 15 The brightness of the display can be adjusted in 16 levels from $00=$ very dark to $15=$ very bright via this parameter or alternatively via the navigation keys from the outside. During the start of the device the level that is deposited under this parameter will always be used, even though the brightness has been changed via the navigation keys in the meantime.
$\begin{aligned} & F \& \square \Xi H \\ & \nabla \triangle \end{aligned}$	Display flashing, FLASH: Default: MO A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
LR5L	Assignment (deposit) of key functions, TAST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [$\boldsymbol{\Delta}$] [$\boldsymbol{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory was activated by EHTR, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L 1.12$ or 11.34 is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRRA the device is tared to zero and saved permanently as offset. The device confirms the correct taring by showing 00000 in the display. SET.TR switches into the offset value and can be changed via the navigation keys [$\mathbf{4}$] [\mathbf{V}]. Via TOTRL the current value of the totaliser can be displayed, after this the device changes back on the parameterised display value. If TOT.RE is deposited, the totaliser can be set back by pressing of the navigation keys [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$], the device acknowledges this with 00000 in the display. The configuration of EHT.RE deletes the min/maxmemory. Under ACTUR the measurand is shown, after this the display returns to the parameterised display value. If $8 B 5 . U A$ (absolute value) was selected, the display shows the value that has been measured since voltage connection, without consideration of a previous taring. Via selection Ll.1, LI.1-2, LI.1-3, Ll.7-4, in case of 8 switching points LI.7-5...LI.7-8, threshold values can be addressed via the navigation keys; they can be changed digit per digit or taken over by pushing the [P]-key. The adjustment is taken over directly, an excisting limit value monitoring and the current measurement will not be influenced by this. If $M O$ is selected, the navigation keys are without any function in the operation mode.

Menu level	Parameterisation level
$\begin{aligned} & \text { ヒロムヒ! } \\ & \nabla \nabla \triangle \mid \end{aligned}$	Special function［O］－key，TRST．4： Default：MO For the operation mode，special functions can be deposited on the［O］－key．This function is activated by pressing the key．With TRRA the device is set temporarily on a parameterised value． The device acknowledges the correct taring with 00000 in the display．SET．TR adds a defined value on to the currently displayed value．Via TOTRL the current value of the totaliser can be displayed，after this the device switches back on the parameterised display value．If TOT．RE is deposited，the totaliser can be set back by pressing the navigation keys［ $\mathbf{\Delta}$ ］［ $\mathbf{\nabla}$ ］，the device acknowledges this with 00000 in the display．EHT．RE deletes the min／max－memory．If HOLD has been selected，the moment can be hold constant by pressing the［O］－key and is updated by releasing the key．Advice：HOLD is activated only，if HOLD was selected under parameter DISPL． ACTUR shows the measuring value，after this the device switches back on the parameterised display value．The same goes for $R V G$ ，here the sliding average values will be displayed．A sensor calibration is done by triggering of the digital input via SE．CRL，the flow diagram is shown in chapter 9 ．The constant value COMST can be recalled via the digital input，or changed digit per digit．At RL－7．．．RL－4 an output can be set and therewith e．g．a setpoint adjustment can be done．If $M O$ is selected，the［O］－key is without any function in the operation mode．
	Special function digital input，DוGIM： Default：NO In operation mode，the above shown parameter can be laid on the optional digital input，too． Function description see TRST．Y．
$\begin{aligned} & \mid r E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level，RET： With［P］the selection is confirmed and the device changes into menu group level ．－FCT－＂．

5.4.3. Safety parameters

5.4.4. Serial parameters

5.4.5. Analog output parameters for analog output 1

Menu level	Parameterisation level
$\begin{aligned} & \nabla \angle L \nabla L \\ & \|\nabla \triangle\| \end{aligned}$	Selection reference of analog output, OUTPT: Default: ACTUA The analog output signal can refer to different functions, in detail these are the current measurand, the min-value, the max-value, the totaliser function/sum function, the constant value or the difference between current measurand and constant value. If HOLD was selected, the signal of the analog output will be kept. It can be continued processing after a deactivation of HOLD. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \square ゅ E . F \square \\ & \|\nabla \Delta\| \end{aligned}$	Selection analog output, OUT.RR: Default: 4-20 Three output signals are available $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the desired signal with this function.
BuLEE	Setting the final value of the analog output, OUT.EM: Default: 10000 The final value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.
	Setting the initial value of the analog output, OUT.OF: Default: 00000 The initial value is adjusted from the smallest to the highest digit with [\mathbf{A}] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Analog output parameters for analog output 2

Menu level

Menu level	Parameterisation level
	Selection analog output, ouZ.RR: Default: 4-20 3 output signals are available $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the desired signal with this function.
	Setting the final value of the analog output, ouz.EM: Default: 10000 The final value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$][\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.
	Setting the initial value of the analog output, OU2.OF: Default: 00000 The initial value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed digit per digit with [P]. A minus sign can only be parameterised on the highest digit. After the last digit the device changes back into menu level.
	Overflow behaviour, ouz.FL: Default: EDGE La.П月H \triangle To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either $E D G E$, that means the analog output runs on the set limits e.g. 4 and 20 mA , or $T 0.0 \mathrm{FF}$ (input value smaller than initial value, analog output switches on e.g. 4 mA), TO.END (higher than final value, analog output switches on e.g. 20 mA). If TO.MII or TO.MAX is set, the analog output switches on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \square-E L \\ & \nabla \nabla \Delta \mid \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level ..-OUZ-".

5.4.6. Relay functions

5.4.7. Alarm parameters

Menu level

Menu level	Parameterisation level
$\begin{aligned} & \begin{array}{\|l\|l\|l\|} \hline L & I & - \\ \hline \nabla & \Delta \end{array} \\ & \qquad \nabla \end{aligned}$	Threshold values / limit values, $L-7$: Default: 2000 The limit value defines the threshold, that activates/deactivates an alarm.
	Hysteresis for threshold values, $\mathrm{H}-\mathrm{l}$: Default: 00000 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & \mid F_{\boldsymbol{L}}-i \\ & \|\nabla \Delta\| \end{aligned}$	Function for threshold value undercut / exceedance, $\mathrm{FU}-7$: Default: HIGH H 油 \square Laut \square A limit value undercut is selected with LOUU (for LOW = lower limit value), a limit value exceedance with HIGH (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $\boldsymbol{H} G H$, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
$\begin{aligned} & \qquad \operatorname{Lan}-\mid \\ & \|\nabla \Delta\| \end{aligned}$	Switching-on delay, TOM-I: Default: 000 \square \square For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
$\begin{aligned} & \text { LaF-i } \\ & \qquad \nabla \Delta \mid \end{aligned}$	Switching-off delay, TOF-1: Default: 000
$\begin{aligned} & \square-E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .-RLI-".

The same applies for RL2 to RL8.

5.4.8. Totaliser (Volume metering)

Menu level	Parameterisation level
$\begin{gathered} \text { LaLRL } \\ \|\nabla \Delta\| \end{gathered}$	Totaliser state, TOTRL: Default: OFF The totaliser makes measurements on a time base of e.g. I/h possible, at this the scaled input signal is integrated by a time and steadily (select STERD) or temporarily (select TEAP) saved. Select the constant storage for consumption measurements and the quick storage for frequently filling processes. During the constant storage STEAD the current sum value is saved at each totaliser reset. Furthermore it is saved every 30 minutes in the not-quick storage of the device. If DFF was selected, the function is deactivated. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \angle . \square \cap 5 E \\ & \|\nabla \Delta\| \end{aligned}$	Time base, T.BRSE: Default: SEC \square 5EL \square Min Under this parameter the time base of the measurement can be preset in seconds, minutes or hours.
$\begin{aligned} & F B \backsim L \square \\ & \|\nabla \Delta\| \end{aligned}$	Totaliser factor, FRCTO: Default: IEO At this, the factor (1E0...1E6) respectively the divisor for the internal calculation of the measuring value is assigned.
$\begin{aligned} & \text { LGL.GI } \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the decimal point for the totaliser, TOT.DT: Default: 0 The decimal point of the device can be adjusted with the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. With [P] the selection is confirmed and the device changes into menu level.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

Programming interlock, RUM:

6. Reset to factory settings

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S4; furthermore alarms can be controlled by events like e.g. Hold or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value, constant value, difference between instantaneous value and constant value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Quiescent current

By quiescent current the alarm S1-S4 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a shortterm exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Interfaces RS232 and RS485

Connection RS232

Digital device M3
PC - 9-pole Sub-D-plug

14	RxD	TxD	
15	TxD	RxD	
16	GND	GND	

Connection RS485

Digital device M3

The interface RS485 is connected via a screened data line with twisted wires (Twisted-Pair). On each end of the bus segment a termination of the bus lines needs to be connected. This is neccessary to ensure a secure data transfer to the bus. For this a resistance (120 Ohm) is interposed between the lines Data $\mathrm{B}(+)$ and Data A (-).

9. Sensor alignment offset / final value

The device is equipped with a semi-automatic sensor calibration (SEMSU / SEMSR). A switching output operates the trimming resistor, which exists in some sensors. An adjustment of offset and final value takes place, after which the sensor can be used directly. Depending on parameterisation, the calibration can be realized via the 4th key or via the digital input. It is possible to key during the calibration steps. So, reference signals can be connected manually. However the calibration will be interrupted after 30 seconds.

10. Technical data

Housing				
Dimensions	$96 \times 48 \times 120 \mathrm{~mm}$ (BxHxD)			
	$96 \times 48 \times 139 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal			
Panel cut-out	$92.0^{+0,8} \times 45.0^{+0,6} \mathrm{~mm}$			
Wall thickness	to 15 mm			
Fixing	screw elements			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (Front), IP00 (Back side)			
Weight	approx. 300 g			
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	14 mm			
Segment colour	red (optional blue/green/orange)			
Range of display	-19999 to 99999			
Setpoints	one LED per setpoint			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring error	Digit
min -22...max 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1 \% of measuring range	± 1
min -12...max 12 VDC	0... 10 VDC	$\sim 200 \mathrm{k} \Omega$	0.1 \% of measuring range	± 1
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, }>10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega \end{aligned}$			
Accuracy				
Temperature drift	100 ppm / K			
Measuring time	$0.1 . .10 .0$ seconds			
Measuring principle	U/F-converter			
Resolution	approx. 18 bit at 1s measuring time			
Output				
Sensor supply	24 VDC / 50 mA ; 10 VDC / 50 mA			
Analog output	0/4-20 mA / burden $\leq 500 \Omega$ or 0-10 VDC / burden $\geq 10 \mathrm{k} \Omega, 16$ bit			

Switching outputs	
Relay with change-over contacts Switching cycles	250 VAC / 5 AAC; 30 VDC / 5 ADC 30×10^{3} at 5 AAC, 5 ADC ohm resistive load 10×10^{6} mechanically Diversity according to DIN EN50178 / Characteristics according to DIN EN60255
PhotoMos outputs	$30 \mathrm{VDC/AC}, 0,4 \mathrm{~A}$
Interface	
Protocol	Modbus with ASCII or RTU-protocol
RS232	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max. 3 m
RS485	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max 1000 m
Power supply	100-240 VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ (max. 15 VA$)$ $10-40$ VDC, $18-30$ VAC $50 / 60 \mathrm{~Hz}$ (max. 15 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0 . .50^{\circ} \mathrm{C}$
Storing temperature	$-20 . . .80^{\circ} \mathrm{C}$
Climatic density	relative humidity 0-80\% on years average without dew
EmV	EN 61326, EN 55011
CE-sign	Conformity to directive 2004/108/EG
Safety standard	according to low voltage directive 2006/95/EG EN 61010; EN 60664-1

11. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The DAL-311--device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in

 personal injury and/or cause damage to the equipment.
Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The DAL-311-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

	Error description	Measures			
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated setpoints are parameterised. Check if the relevant parameters are adjusted correctly.			
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit.			
- With a selected input with a low voltage signal, it					
is only connected on one side or the input is open.					
- Not all of the activated setpoints are					
parameterised. Check if the relevant parameters					
are adjusted correctly.			$	$	- The unit has found an error in the configuration
:---					
memory. Perform a reset on the default values					
and reconfigure the unit according to your					
application.					

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана $+7(7172) 727-132$
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

