
fill level

water level

pressure

temperature

flow

visualization

signal converter

sensoric

contsys

DAM 311

Direct current / direct voltage signals 0-20 mA, 4-20 mA, 0-10 VDC

Technical features:

- 3-digit red display of -199... 999 digits (optional green)
- 20 points bargraph tricolour (red/orange/green)
- adjustable bar or dot operation or operation with permanent display of center point

- min/max memory
- 30 additional adjustable setpoints
- display flashing at threshold value exceedance/undercut
- zero-key for triggering of Hold, Tara
- permanent min/max-value recording
- volume metering (totalisator)
- mathematical functions like reciprocal value, square root, squaring or rounding
- sliding averaging
- programming interlock via access code
- protection class IP65 at the front
- plug-in screw terminal
- optional: 1 or 2 relay outputs (changer)
- optional: sensor supply
- optional: galv. isolated digital input for triggering of Tara, Hold, display change
- optional: 1 independently scalable analog output
- optional: interface RS232 or RS485
- accessories: PC-based configuration kit PM-TOOL with CD and USB-adaptor for devices without keypad and for a simple adjustment of standard devices

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Order code

power supply
 power sup $100-240$ VAC

$2 \quad 10-40$ VDC galvanic seperated
3 100-240 VAC with sensor supply 24 V DC/40 mA and digital input (no analog output possible) ${ }^{1}$
$4 \quad 10 \ldots 40 \mathrm{~V}$ DC galvanic seperated with sensor supply 24 V DC/ 40 mA and
digital input (no analog output possible) ${ }^{1 /}$
function input
0 0/4-20mA, 0-10V DC

function output

0 no output
display with 2 relay outputs (changeover)
C display with analog output $0 / 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$, switchable
display +1 relay with analog output $0 / 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$, switchable

0 standard configuration
model
0 vertical Model
S standard, protection IP65

Contents

1. Brief description 2
2. Assembly 2
3. Electrical connection 3
4. Description of function and operation 6
4.1. Programming software PM-TOOL 7
5. Setting up the device 8
5.1. Switching on 8
5.2. Standard parameterisation (flat operation level) 8
Value assignment for the triggering of the signal input of the digital display and bargraph display
5.3. Programming interlock ${ }^{\text {,RUIM" }}$ 11
Activiation/Deactivation of the programming interlock or change into professional operation level respectively back into flat operation level
5.4. Extended parameterisation (professional operation level) 12
5.4.1. Signal input parameters „,MP" 12Value assignment for the triggering of the signal input incl. linearisation of the digital display andthe bargraph display
5.4.2. General device parameters „FCT" 15
Superior device functions like Hold, Tara, min/max permanent, averaging, as well as the control of the digital input and keyboard layout
5.4.3. Bargraph functions „BRR‘
Assignment of the bargraph to superior functions like min/max, totaliser, Hold or sliding averaging
5.4.4. Safety parameters „ COD' $^{\text {C }}$ 20
Assignment of user and master code for locking respectively for access to defined parameters like e.g. analog output and alarms, etc.
5.4.5. Serial parameters ,,SER" 21Parameters for the definition of the interface
5.4.6. Analog output parameters „OUT" 22
Analog output functions
5.4.7. Relay functions „REL" 24Parameters for the definition of the setpoints
5.4.8. Alarm parameters „RLI...RL4" 25
Actuator and dependencies of the alarms
5.4.9. Totaliser (volume metering) „TOT" 27Parameters for the calculation of the sum function
6. Reset to factory settings 28
Reset parameters to delivery state
7. Alarms / Relay 29Functional principle of the switching outputs
8. Interfaces 30
Connection RS232 and RS485
9. Technical data 31
10. Safety advices 33
11. Error elimination 34

1. Brief description

The panel meter instrument DAM-311 is a 3-digit digital display with a 30 points bargraph display and optional two galvanic isolated setpoints; designed for direct current/direct voltage signals. The configuration happens via 4 keys at the front. The integrated programming interlock prevents unrequested changes of parameters and can be unlocked again with an individual code. Optional the following functions are available: a supply for the sensor, a digital input for triggering of Hold (Tara), two analog outputs and interfaces for further evaluating in the unit. The electrical connection is done via plug-in terminals on the back side.
Selectable functions like e.g. the recall of the min/max-value, an averaging of the measuring signals, a direct threshold value regulation during operation mode and further measuring setpoints for linearisation, complete the modern device concept.

2. Assembly

Please read the Safety advices on page 33 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

The dimension symbols can be exchanged before installation via a channel on the side!
(This is only true for the horizontal design. For the vertical design, this needs to be quoted with the order!)

3. Electrical connection

Type DAM-311x0x00S
Type DAM-311x0x00S
Type DAM-311x0x00S
Type DAM-311x0x00S
supply of 100-240 VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ horizontally supply of $100-240$ VAC $50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ vertically
supply of 10-30 VDC, galv. isolated, $18-30$ VAC $50 / 60 \mathrm{~Hz}$ horizontally supply of $10-30 \mathrm{VDC}$, galv. isolated, $18-30 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ vertically

Options:
 or

Interface RS485
(Modbus protocol)
Alternative to analog output

DAM-311x0x00S with digital input in combination with a 24 VDC sensor supply

DAM-311x0x00S with digital input and external voltage source

Connection examples

Below please find some connection examples that show practical applications. For devices with current inputs / voltage inputs, without sensor supply.

DAM-311x0x00S in combination with a
2-wire-sensor 4-20 mA

DAM-311x0x00S in combination with a
3-wire-sensor 0/4-20 mA

DAM-311x0x00S in combination with a 3-wire-sensor 0-10 V

With current respectively voltage input in combination with a 24 VDC sensor supply.

2-wire-sensor 4-20 mA

3-wire-sensor 0-20 mA

Transmitter

3-wire-sensor 0-10 V

Transmitter

4. Description of function and operation

Operation

The operation is divided into three different levels.
Menu level (delivery status)
This level was designed for the standard settings of the device. Only menu items which are sufficent to set the device into operation are displayed. To get into the professional level, run through the menu level and parameterise PRF under menu item RUM.

Menu group level (complete function volume)
Suited for complex applications as e.g. linkage of alarms, supporting point treatment, totaliser function etc. In this level function groups which allow an extended parameterisation of the standard settings are availabe. To leave the menu group level, run through this level and parameterise ULC under menu item RUM.

Parameterisation level:

Parameter deposited in the menu item can here be parameterised. Functions, that can be changed or adjusted, are always signalised by a flashing of the display. Settings that are made in the parameterisation level are confirmed with [P] and thus saved. Pressing the [O]-key leads to a break-off of the value input and to a change into the menu level. All adjustments are saved automatically by the device and changes into operating mode, if no further key operation is done within the next 10 seconds.

Level	Key	Description
Menu-level	P	Change to parameterisation level and deposited values.
	$\triangle \square$	Keys for up and down navigation in the menu level.
	0	Change into operation mode.
Parameterisationlevel	P	To confirm the changes made at the parameterisation level.
	$\triangle \square$	Adjustment of the value / the setting.
	O	Change into menu level or break-off in value input.
Menu group level	P	Change to menu level.
	$\triangle \square$	Keys for up and down navigation in the menu group level.
	O	Change into operation mode or back into menu level.

Function chart:

Underline:

(P) Takeover
(1) Stop
Δ Value selection (+)

- Value selection (-)

4.1 Parameterisation software PM-TOOL:

Part of the PM-TOOL are the software on CD and the USB-cable with device adapter. The connection happens via a 4-pole micromatch-plug on the back side of the device, to the PC-side the connection happens via an USB plug.

System requirements: PC incl. USB interface
Software: Windows XP, Windows VISTA
With this tool the device configuration can be generated, omitted and saved on the PC. The parameters can be changed via the easy to handle program surface, whereat the operating mode and the possible selection options can be preset by the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, start the device by applying the voltage supply. Before, check once again that all electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test (888) is displayed followed by an indication of the software type and, after that, also for 1 second the software version. After the starting sequence, the device switches to operation/display mode.
5.2. Standard parameterisation: (Flat operation level)

To parameterise the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.

Menu level	Parameterisation level
$\begin{aligned} & \boxed{\boxed{\prime}} \boldsymbol{\square} \square \\ & \nabla \square \end{aligned}$	Selection of the input signal, TYP: Default: SE.U Available as measuring input options are $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $0-10$ VDC signals as works calibration (without application of the sensor signal) and SE.U (voltage) or SE. $\%$ (current) as sensor calibration (with the sensor applied). Confirm the selection with [P] and the display switches back to menu level.
$\begin{gathered} E \cap \square \\ \nabla \square \end{gathered}$	Setting the end value of the measuring range, END: Default: 100 Set the end value from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterized on the highest value digit. After the last digit, the display switches back to the menu level. If $5 E . U$ or $5 E . 月$ were selected as input option, you can only select between MOC and CRL. With MOC, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.
$\begin{gathered} \square F= \\ \nabla \square \end{gathered}$	Setting the start/offset value of the measuring range, OFF: Default: 0 Enter the start/offset value from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. After the last digit the display switches back to the menu level. If $5 E M$ was selected as input option, you can only select between MOC and CRL. With MOC, only the previously set display value is taken over, and with CRL, the device takes over both the display value and the analogue input value.
$\begin{gathered} \square \square \boxed{\square} \square \\ \nabla \square \end{gathered}$	Setting the decimal point, DOT: Default: 0 \square \square The decimal point on the display can be moved with [$\mathbf{\Delta}$] [\mathbf{V}] and confirmed with [P]. The display then switches back to the menu level again.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Seting up the display time, sec: | |
| Default: 10 | |

Menu level	Parameterisation level
	Select analog output, $0 . R A$: Default: 4.20 Three output signals are available: $0-10 \mathrm{VDC}, 0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$, with function the desired signal can be selected.
	Setting up the final value of the analog output, $0 . E M$: Default: 100 Set the final value from the smallest to the highest digit with [\mathbf{A}] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterised on the highest value digit. After the last digit, the display switches back to the menu level.
$\begin{aligned} & \square . \square \mid F \\ & \|\nabla \Delta\| \end{aligned}$	Setting up the initial value of the analog output, 0.0F: Default: 0 Set the initial value from the smallest to the highest digit with [$\boldsymbol{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterised on the highest value digit. After the last digit, the display switches back to the menu level.
$\begin{gathered} \begin{array}{\|l\|l\|} \hline \mathbf{L} & \mathbf{i} \\ \hline \end{array} \\ i \\ \nabla \\ \hline \end{gathered}$	Threshold value / limit value, LI.I: Default: 20 17 P 1 P P The threshold value shows the limit, that leads to an activation of the alarm, respectively shows until which value the alarm stays inactive.
	Hysteresis for threshold values, HY.7: Default: 0 The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.
$\begin{aligned} & \begin{array}{\|r\|l\|l\|} \hline- & \ldots & i \\ \nabla & \Delta \\ & \\ \nabla & \Delta \end{array} \end{aligned}$	Function for threshold value undercut / exceedance, FU.1: Default: HIG A limit value undercut is selected with LOU (for LOW = lower limit value), a limit value exceedance with HIG (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function $H H G$, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOU, an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.

Menu level	Parameterisation level
$\begin{gathered} \begin{array}{\|r} \hline-G \\ \hline \end{array} \\ \square \end{gathered}$	Threshold values / limits, C .81 : Default: MO Here, the colour of the bargraph that displays a breaking of RLRRMI. Available are green, orange and red. If $M O$ was parameterised, the standard colouor remains. Confirm the selection with [P] and the display switches back to menu level.
	The same applies to LI-7 to LI-C !
	User code (3-digit number combination, free available), U.CODE: Default: 000 If this code was set (>0000), all parameters are locked for the user, if LOC has been selected before under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows COD. The U.CO needs to be entered to get to the reduced number of parameter sets. The code has to be entered befor each parameterisation, until the 8.50 (Master code) unlocks all parameters again.
$\begin{aligned} & \boxed{\square} \boldsymbol{\square}, \square \\ & \nabla \\ & \square \end{aligned}$	Master code (3-digit number-combination, free available), R.CODE: Default: 123 All parameters can be unlocked with this code, after LOC has been activated under menu item RUM. By pressing [P] for 3 seconds in operation mode, the display shows $C O D$ and enables the user to reach all parameters by entering the R.C0. Under RUM the parameterisation can be activated permanently by selecting ULC or PRF, thus at an anew pushing of [P] in operation mode, the code needs not to be entered again.
5.3. Programming interlock „RUM"	
\square	Activation / deactivation of the programming lock or completion of the standard parameterization with change into menu group level (complete function range), RUM: Default: ULC $\text { LILE } \frac{\Delta}{\nabla} \text { LDE } \frac{\Delta}{\nabla} \text { PrF } \underset{\nabla}{\Delta} P$ With the navigation keys [\mathbf{A}] [\mathbf{V}] choose between the deactivated key lock ULC (works setting) and the activated key lock LOC, or the change into the menu group level PRF. Confirm the selection with [P]. After this, the display confirms the settings with "- --", and automatically switches to operating mode. If LOC was selected, the keyboard is locked. To get back into the menu level, press [P] for 3 seconds in operating mode. Now enter the COD (works setting 123) that appears using [\mathbf{A}] [$\boldsymbol{\nabla}$] plus [P] to unlock the keyboard. FRI appears if the input was wrong. To parameterize further functions PRF needs to be set. The device confirms this setting with ,"--,, and changes automatically in operation mode. By pressing [P] for approx. 3 seconds in operation mode, the first menu group IMP is shown in the display and thus confirms the change into the extended parameterisation. It stays activated as long as ULC is entered in menu group RUM, which sets the display into standard parameterisation again.

5.4. Extended parameterisation (professional operation level)

5.4.1. Signal input parameters

Menu level	Parameterisation level
$\begin{aligned} & \boxed{\boxed{I}} \square \\ & \square \square \\ & \square \end{aligned}$	Selection of the input signal, TYP: Default: 5E.U There are several measuring input options: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$ or $0-10$ VDC signals are available as works calibration (without application of the sensor signal) and SE.U (voltage) or SE. \boldsymbol{R} (current) as sensor calibration (with the sensor applied). Confirm the selection with [P] and the display switches back to menu level.
$\begin{gathered} \boxed{E} \square \square \\ \nabla \\ \square \end{gathered}$	Setting up the final value of the measuring range, EMD: Default: 100 Set the final value from the smallest to the highest digit with [$\boldsymbol{\Delta}$] [$\boldsymbol{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterised on the highest value digit. After the last digit, the display switches back to the menu level. If SE.U or SE.R were selected as input option, you can only select between MOC and CRL. With MOC, only the previously set display value is taken over, and with CRL, the matching via the measuring section is done and the device takes over the analogue input value.
$\begin{gathered} \square \equiv \square \\ \nabla \square \end{gathered}$	Setting up the initial value of the measuring range, OFF: Default: 0 Set the initial value from the smallest to the highest digit with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$] and confirm each digit with [P]. A minus sign can only be parameterised on the highest value digit. After the last digit, the display switches back to the menu level. If SE.U or SE.R were selected as input option, you can only select between MOC and CRL. With MOC, only the previously set display value is taken over, and with CAL, the matching via the measuring section is done and the device takes over the analogue input value.
$\begin{gathered} \square \square \boxed{\square} \square \\ \nabla \square \end{gathered}$	Setting the decimal point, $D O T$: Default: 0 \square 17 The decimal point on the display can be moved with [$\mathbf{\Delta}$] [$\mathbf{V}]$ and confirmed with [P]. The display then switches back to the menu level again.

Menu level	Parameterisation level
$\begin{aligned} & \boxed{E L} \\ & \nabla \nabla \Delta \mid \end{aligned}$	Setting up the measuring time, SEC: Default: 1.0 The measuring time is set with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. The display moves up in increments of 0.1 up to 1 second and in increments of 1.0 up to 10.0 seconds. Confirm the selection by pressing the [P] button. The display then switches back to the menu level again.
	Rescaling the measuring input values, EM.R: Default: 100 With this function, you can rescale the final value to e.g. 19.5 mA input signal, without applying a measuring signal.
$\begin{gathered} \square F . B \\ \nabla \triangle \Delta \end{gathered}$	Rescaling the measuring input values, OF. A : Default: 0 With this function, you can rescale the initial value to e.g. $\mathbf{3 . 5} \mathrm{mA}$ input signal, without applying a measuring signal.
$\begin{gathered} \underline{\square} \boldsymbol{\square}, ~ \\ \nabla \Delta \end{gathered}$	Setting up the tare/offset value, TAR: Default: 0 \square \square The given value is added to the linerarized value. In this way, the characteristic line can be shifted by the selected amount
	Number of additional supporting points, SP.C: Default: 00 30 additional supporting points can be defined to the initial- and final value, so linear sensor values are not linearised. Only activated setpoint parameters are displayed.
	Display values for supporting points, D.O1 ... D.30: Under this parameter supporting points are defined according to their value. At the sensor calibration, like at „Final value/offset", one is asked at the end if a calibration shall be activated.

Menu level

5.4.2. General device parameters

Menu level	Parameterisation level
$\begin{array}{c\|c\|} \hline-6 & 1.5 \\ 4 & \nabla \\ \hline \end{array}$	Display time, 미.5: Default: 1.0 The display is set up with [$\mathbf{\Delta}$] [$\mathbf{\nabla}$]. Thereby it switches until 1 second in increments of 0.1 seconds and until 10.0 seconds in increments of 1.0 . With [P] the selection is confirmed and the device changes into menu level.
	Rounding of display values, RMD: Default: 001 This function is for instable display values, where the display value is changed in increments of 1,5 or 10. This does not affect the resolution of the optional outputs. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \begin{array}{\|r\|r\|} \hline-1, & i \\ \nabla & \Delta \end{array} \\ & \left\lvert\, \begin{array}{ll} 4 & \end{array}\right. \end{aligned}$	With this function the calculated value, not the measuring value, is shown in the display. With MO, no calulation is deposited. With [P] the selection is confirmed and the device changes into menu level.
$\begin{aligned} & \text { BLL } \\ & \text { A } \boldsymbol{\nabla} \mid \end{aligned}$	Sliding average determination, $R \cup G$: Default: 10 \square P \square 50 P Here, the number of the meterings that need to be averaged is preset. The time of averaging results of the product of measuring time SEC and the averaged metering AVG. With the selection of $A V G$ in the menu level DIS, the result will be shown in the display and evaluated by entering RLI-RLY in the alarm or via the analog output OUT.

Menu level	Parameterisation level
$\begin{aligned} & \Xi E \square \\ & \nabla \triangle \Delta \end{aligned}$	Zero point slowdown, ZER: Default: 00 \square At the zero point slowdown, a value range around the zero point can be preset, so the display shows a zero. If e.g. a 10 is set, the display would show a zero in the value range from -10 to +10 ; below continue with -11 and beyond with +11 . The maximum adjustable range of value is 99.
$\begin{array}{c\|c\|c\|} \hline- & 15 \\ \nabla & \Delta \end{array}$	
$\begin{aligned} & F i 5 \\ & \|\nabla \Delta\| \end{aligned}$	Display flashing, FLS: Default: MO A display flashing can be added as additional alarm function either to single or to a combination of off-limit condition. With MO, no flashing is allocated.
$\begin{gathered} \boxed{I} L \\ \nabla \Delta \end{gathered}$	Assignment (deposit) of key functions, TST: Default: MO For the operation mode, special functions can be deposited on the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], in particular this function is made for devices in housing size $48 \times 24 \mathrm{~mm}$ which do not have a 4 th key ([O]-key). If the min/max-memory was activated by EHT, all measured min/max-values are saved during operation and can be recalled via the navigation keys. The values get lost by restart of the device. If the threshold value correction $L .12$ or $L .34$ is choosen, the values of the threshold can be changed during operation without disturbing the operating procedure. With TRR the device is tared to zero and saved permanently as offset. The device confirms the correct taring by showing 000 in the display. S.TR switches into the offset value and can be changed via the navigation keys [$\mathbf{\Delta}$] [\mathbf{V}]. With TOT the current totaliser value can be displayed, after this, the display switches back onto the parameterised display value. If T.RE was selected, the totaliser can be set back by using the navigation keys [$\mathbf{\Delta}$] [$\mathbf{\nabla}$], the display confirms this by showing 000 in the display. The configuration of $E H . R$ deletes the min/max-memory. With RCT the measurand is displayed, after this the display switches back to the parameterised display value. If $M O$ is selected, the navigation keys are without any function in the operation mode.

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Special function [O]-key, T5.4: | |
| Default: NO | |

5.4.3. Bargraph functions

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| Bargraph, B.5R: | |
| Default: $A C T$ | |

Change of colour at alarm, B.LI:
Default: CHG

| Menu level | Parameterisation level |
| :--- | :--- | :--- |

5.4.4. Safety parameters

Menu level	Parameterisation level
	User code U.CD: Default: 000 Via this code locked reduced sets of parameters R.LE and O.LE can be set free during locked programming. Further parameters cannot be reached via this code. A change of the U.CO can be done via the correct input of the R.CO (master code).
	Master code, R.CODE: Default: 000 By entering $8 . C O$ the device will be unlocked and all parameters are released.

Menu level	Parameterisation level
$\begin{gathered} \square .1 E E \\ \|\nabla \boxed{\Delta}\| \end{gathered}$	Release/lock analog output parameters, O.LE: Default: RLL $P \square n a \frac{\Delta}{\nabla} \square-E \frac{\Delta}{\nabla} 5,-\Sigma \stackrel{\Delta L L}{\nabla} \stackrel{\Delta}{\nabla} P$ Analog output parameters can be locked or released for the user: - $5 R C$: the initial or final value can be changed in operation mode - 0.0E: the output signal can be changed from e.g. $0-20 \mathrm{~mA}$ to $4-20 \mathrm{~mA}$ or $0-10 \mathrm{VDC}$ - RLL: analog output parameters are released - MO: all analog outpout parameters are locked
$\begin{gathered} \square .1 E E \\ \|\nabla \Delta\| \end{gathered}$	Release/lock alarm parameters, f.LE: Default: RLL $\Pi \square \Delta L I n \Delta B L \square \Delta B L L \Delta P$ This parameter describes the user release/user lock of the alarm: - Lim: here only the range of value of the threshold values 1-4 can be changed - RLR : here the range of value and the alarm trigger can be changed - RLL: all alarm parameters are released - MO: all alarm parameters are locked
$\begin{aligned} & -E L \\ & \|\nabla \Delta\| \end{aligned}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level "COD".

5.4.5. Serial parameters

Menu level	Parameterisation level
	Device address, $A D O:$ Default: 001

Menu level	Parameterisation level

5.4.6. Analog output parameters

| Menu level | Parameterisation level |
| :--- | :--- | :--- |
| | Selection reference of analog output, 0.5 :
 Default: $A C T$ |

Menu level	Parameterisation level
	Selection analog output, 0.RR: Default: 4.20 3 output signals are available $0-10$ VDC, $0-20 \mathrm{~mA}$ and $4-20 \mathrm{~mA}$. Select the desired signal with this function.
$\begin{aligned} & \square . E n \\ & \nabla, ~ \\ & \square \end{aligned}$	Setting the final value of the analog output, O.EM: Default: 100 The final value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$][$\mathbf{\nabla}]$ and confirmed digit per digit with $[P]$. A minus sign can only be parameterized on the highest digit. After the last digit the device changes back into menu level.
$\begin{gathered} \square .7 . \square \\ \nabla \Delta \Delta \end{gathered}$	Setting the initial value of the analog output, 0.0 F : Default: 0 The initial value is adjusted from the smallest to the highest digit with [$\mathbf{\Delta}$][$\mathbf{\nabla}$] and confirmed digit per digit with [P]. A minus sign can only be parameterized on the highest digit. After the last digit the device changes back into menu level.
$\begin{aligned} & \square \square . \square L \\ & \nabla \Delta \Delta \end{aligned}$	Overflow behaviour, $0 . \mathrm{FL}$: Default: EDG To recognise and evaluate faulty signals, e.g. by a controller, the overflow behaviour of the analog output can be defined. As overflow can be seen either EDG, that means the analog output runs on the set limits e.g. 4 and 20 mA , or T.OF (input value smaller than initial value, analog output switches on e.g. 4 mA), T.EM (higher than final value, analog output switches on e.g. 20 mA). If $T . M 1$ or $T . M R$ is set, the analog output switches on the smallest or highest possible binary value. This means that values of e.g. $0 \mathrm{~mA}, 0 \mathrm{VDC}$ or values higher than 20 mA or 10 VDC can be reached. With [P] the selection is confirmed and the device changes into menu level.
$\begin{gathered} -E L \\ \nabla \nabla \Delta \mid \end{gathered}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .OUT".

5.4.7. Relay functions

Menu level	Parameterisation level
$-E L$	Back to menu group level, RET:
$-\square$	
	With [P] the selection is confirmed and the device changes into menu group level ..REL".

5.4.8. Alarm parameters

Menu level	Parameterisation level
$\begin{aligned} & 5,-1 \\ & \nabla \nabla \Delta \end{aligned}$	Dependency alarm 1, 5 R.7: Default: RCT The dependency of alarm 1 can be related to special functions, in detail these are the current measuring value, the min-value, the max-value or the totaliser value/sum-value. If HLD was selected, then the alarm is hold and processed just after deactivation of HLD. DIG causes the dependency either by pressing the [0]-key on the front of the housing or by an external signal via the digital input. With [P] the selection is confirmed and the device changes into menu level.
$\begin{array}{l\|l\|l\|} \hline \begin{array}{l\|l\|} \hline L & i \\ \hline \end{array} \\ \hline \nabla & \Delta \\ \hline \end{array}$	Threshold values / limit values, LI.T: Default: 20 The limit value defines the threshold, that activates/deactivates an alarm.
	Hysteresis for threshold values, Hצ.7: Default: 0 \square P \square P The delayed reaction of the alarm is the difference to the threshold value, which is defined by the hysteresis.

Menu level	Parameterisation level
	Function for threshold value undercut / exceedance, Fu.1: Default: HIG $H I G \Delta \operatorname{Lan} \triangle \square$ A limit value undercut is selected with LOU (for LOW = lower limit value), a limit value exceedance with HIG (for HIGH = higher limit value). If e.g. limit value 1 is on a threshold level of 100 and allocated with function H / G, an alarm is activated by reaching of the threshold level. If the threshold value was allocated to LOU. an alarm will be activated by undercutting the threshold value, as long as the hysteresis is zero.
	Switching-on delay, 0 M .1 : Default: 0 For limit value 1 one can preset a delayed switching-on of 0-100 seconds.
$\begin{gathered} \boxed{\square} F, i \\ \nabla \nabla \Delta \mid \end{gathered}$	Switching-off delay, OF.1: Default: 0 For limit value 1 one can preset a delayed switching-off of 0-100 seconds.
$\begin{gathered} \boxed{-E L} \\ \|\nabla \Delta\| \end{gathered}$	Back to menu group level, RET: With [P] the selection is confirmed and the device changes into menu group level .ALI".

The same applies for RL2 to RLY.

5.4.9. Totaliser (Volume metering)

Menu level

Menu level	Parameterisation level

Programming interlock, RUM:

Description see page 11, menu level RUM

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until ..-.--" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Alarms / Relays

This device has 4 virtual alarms that can monitor one limit value in regard of an undercut or exceedance. Each alarm can be allocated to an optional relay output S1-S2; furthermore alarms can be controlled by events like e.g. hold value or min/max-value.

Function principle of alarms / relays	
Alarm / Relay \mathbf{x}	Deactivated, instantaneous value, min/max-value, hold-value, totaliser value, sliding average value or an activation via the digital input
Switching threshold	Threshold / limit value of the change-over
Hysteresis	Broadness of the window between the switching thresholds
Working principle	Operating current / Quiescent current

Operating current

By operating current the alarm S1-S2 is off below the threshold and on on reaching the threshold.

Quiescent current

By quiescent current the alarm S1-S2 is on below the threshold and switched off on reaching the threshold.

Switching-on delay

The switching-on delay is activated via an alarm and e.g. switched 10 seconds after reaching the switching threshold, a shortterm exceedance of the switching value does not cause an alarm, respectively does not cause a switching operation of the relay. The switching-off delay operates in the same way, keeps the alarm / the relay switched longer for the parameterised time.

8. Interfaces

Connection RS232

Digital meter M3 PC-9-pole Sub-D-plug

8	RXD	TXD	2
9	TXD		
10	GND	RxD	3

Connection RS485

Digital meter M3

The interface RS485 is connected via a screened data line with twisted wires (Twisted-Pair). On each end of the bus segment a termination of the bus lines needs to be connected. This is neccessary to ensure a secure data transfer to the bus. For this a resistance (120 Ohm) is interposed between the lines Data B (+) and Data A (-).
9. Technical data

Housing				
Dimensions	96x24x120 mm (BxHxD)			
	$96 \times 24 \times 145 \mathrm{~mm}(\mathrm{BxHxD})$ incl. plug-in terminal			
Panel cut-out	$92.0^{+0.8} \times 144.0^{+0.6} \mathrm{~mm}$			
Wall thickness	to 15 mm			
Fixing	screw elements			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (front), IP00 (back)			
Weight	approx. 200 g			
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	8 mm			
Segment colour - display	red (optional green)			
Range of display	-199 to 999			
Bargraph display	30 digit, tricolour			
Setpoints	one LED per setpoint			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring error	Digit
min -22...max 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1% of measuring range	± 1
min -12...max 12 VDC	0... 10 VDC	$\sim 200 \mathrm{k} \Omega$	0.1% of measuring range	± 1
Digital input	$\begin{aligned} & <2.4 \mathrm{~V} \text { OFF, }>10 \mathrm{~V} \text { ON, max. } 30 \mathrm{VDC} \\ & \mathrm{R}_{\mathrm{I}} \sim 5 \mathrm{k} \Omega \end{aligned}$			
Accuracy				
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$			
Measuring time	0.1... 10.0 seconds			
Measuring principle	U/F-conversion			
Resolution	approx. 18 bit at 1 seconds measuring time			

Output	
Sensor supply	$24 \mathrm{VDC} / 50 \mathrm{~mA}$; $10 \mathrm{VDC} / 50 \mathrm{~mA}$
Analog output	0/4-20 mA / burden $\leq 500 \Omega$ or 0-10 VDC / $\geq 10 \mathrm{k} \Omega 16$ bit
Switching outputs	
Relay with change-over contact Switching cycles	$250 \mathrm{VAC} / 5 \mathrm{AAC} ; 30 \mathrm{VDC} / 5$ ADC 30×10^{3} with 5 AAC, 5 ADC ohm resistive burden 10×10^{6} mechanically Division according to DIN EN50178 / Characteristics according to DIN EN60255
Interface	
Protocol	Modbus with ASCII or RTU-protocol
RS232	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max. 3 m
RS485	9.600 Baud, no parity, 8 databit, 1 stopbit, wire length max 1000 m
Power supply	$100-240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \mathrm{DC} \pm 10 \%$ (max. 10 VA) $10-40$ VDC galvanically isolated, $18-30$ VAC $50 / 60 \mathrm{~Hz}$ (max. 10 VA)
Memory	EEPROM
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$
Ambient conditions	
Working temperature	$0^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}$ for panel meters, $-20^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$ for build-up devices
Storing temperature	$-20^{\circ} \mathrm{C} . .80^{\circ} \mathrm{C}$
Climativ density	relative humidity 0-80\% on years average without dew
Height	up to 2000 m over sea level
EMV	EN 61326
CE-sign	Conformity to directive 2004/108/EG
Safety standard	According to low voltage directive 2006/95/EG EN 61010; EN 60664-1

10. Safety advices

Please read the following safety advices and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The DAM-311--device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in

 personal injury and/or cause damage to the equipment.
Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The DAM-311-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from one another and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, you receive best measuring results.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic isolated potentials within one complex need to be placed on an appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

11. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow.	- The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated supporting points are parameterised. Check if the relevant parameters are adjusted correctly.
3.	The word HELP lights up in the 7-segment display.	- The unit has found an error in the configuration memory. Perform a reset on the default values and reconfigure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated. - Enter correct code.
5.	$E R R 7$ lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6. and set it back to its delivery state.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

