Operating Instructions

DAP-101
Direct current/ Direct voltage signals 0-20 mA, 4-20 mA, 0-10 VDC

Technical features:

- red display of -1999... 9999 digits (optional: green, orange or blue display)
- minimal installation depth: 60 mm without plug-in terminal
- adjustment via factory default or directly on the sensor signal
- min/max-memory
- 10 adjustable supporting points
- display flashing at threshold exceedance / undershooting
- tara function
- programming interlock via access code
- protection class IP65 at the front
- plug-in terminal
- pc-based configuration software PM-TOOL with CD and USB-adapter for devices without keypad for a simple adjustment of standard devices

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Order code

Content

1. Brief description 2
2. Assembly 2
3. Electrical connection and conenction examples 3
4. Function description and operation 4
4.1. Programming software PM-TOOL 4
5. Setting up the device 5
5.1. Switching on 5
5.2. Standard parameterisation (flat operation level) 5Value assignment for control of the signal input
5.3. Programming interlock RUM 6
Activation/Deactivation of the programming interlock or change into extended parameterisation
5.4. Extended parameterisation 6Superior device functions like e.g.:

- rescaling of the input signals, EMDR, OFFR 6
- parameterisation of a TARA-function, TARA 6
- zero point slowdown of the input signal, ZERO 7
- allocation of functions onto the navigation keys 7
- adjustment of limit values for optical alarm, L1-1/2 7
- safety parameter for locking of the programming, CODE 9
- input of supporting points for the linearisation of the input signals, SPCT 9

6. Reset to default values 9
Reset of the parameter onto delivery condition
7. Alarms / Switching points 10
Functional principle of the optical switching points
8. Technical data 11
9. Safety advice 13
10. Error elimination 14

1. Brief description

The panel instrument DAP-101 is a 4-digit device for direct voltage and direct current signals and a visual limit value monitoringvia the display. The configuration happens via three front keys or via the optional PC-software PM-TOOL. An integrated programming interlock prevents unrequested changes of the parameter and can be unlocked again via an individual code.
The electrical connection happens on the rearside via plug-interminals.
Selectable functions like e.g. the recall of the min/max-value, a zeropoint slowdown,a direct change of the limit value in operating mode an dadditional measuring supporting points for linearisation complete the modern device concept .

2. Assembly

Please read the Safety instructions on page 16 before installation and keep this user manual for future reference.

1. After removing the fixing elements, insert the device.
2. Check the seal to make sure it fits securely.
3. Click the fixing elements back into place and tighten the clamping screws by hand. Then use a screwdriver to tighten them another half a turn.

CAUTION! The torque should not exceed 0.1 Nm !

3. Electrical connection

Type DAP-101x000S
supply 230 VAC

Type DAP-101x000S
supply 24 VDC galv. isolated

Connection examples:

Below you find some connection examples, which demonstrate some practical applications:

DAP-101x000S in combination with a 2-wire-sensor 4-20 mA

DAP-101x000S in combination with a 3-wire-sensor 0/4-20 mA

DAP-101x000S in combination with a 3-wire-sensor 0-10 V

4. Function description and operation

Operation

The operation is divided into two different levels.
Menu Level
Here it is possible to navigate between the individual menu items.

Parameterization level:

The parameters stored in the menu item can be parameterized here.
Functions that can be adjusted or changed are always indicated with a flashing of the display. Adjustments made at the parameterization level should be always confirmed by pressing the [P] key to save them.
However, the display automatically saves all adjustments and then switches to operation mode if no further keys are pressed within 10 seconds.

Level	Button	Description
Menu level	P	Change to parameterization level with the relevant parameters
	Δ	∇

Example:

4.1. Programming via configuration software PM-TOOL-MUSB4:

You receive the software on CD incl. an USB-cable with a device adapter. The connection is done via a 4-pole micromatch connector plug on the back and the PC is connected via an USB connector plug.

System requirements: PC with USB interface
Software: Windows XP, Windows Vista

With this tool the device configuration can be created, skipped and safed on the PC. Via the easy to handle program surface the parameter can be changed, whereat the mode of operation and the possible selection options can be preset via the program.

CAUTION!

During parameterisation with connected measuring signal, make sure that the measuring signal has no mass supply to the programming plug. The programming adapter is galvanic not isolated and directly connected with the PC. Via polarity of the input signal, a current can discharge via the adapter and destroy the device as well as other connected components!

5. Setting up the device

5.1. Switching on

Once the installation is complete, you can start the device by applying the current loop. Check beforehand once again that all the electrical connections are correct.

Starting sequence

For 1 second during the switching-on process, the segment test ($\left.\begin{array}{ll}8 & 8 \\ 8 & 8 \\ 8\end{array}\right)$ is displayed, followed by an indication of the software type and, after that, also for 1 second, the software version. After the start-up sequence, the device switches to operation/display mode.

5.2. Standard parameterization:

To be able to parameterize the display, press the [P]-key in operating mode for 1 second. The display then changes to the menu level with the first menu item TYPE.
Sencen level

5.4. Extended parameterization

By pressing the [$\boldsymbol{\Delta}$] \& [$\boldsymbol{\nabla}$] keys during standard parameterization for one second, the display switches to the extended parameterization mode. Operation is the same as in standard parameterization.

Menu level	Parameterization level
$\begin{aligned} & E \backsim \square \square \\ & \nabla \nabla \Delta \mid \end{aligned}$	Rescaling the measuring input values, EMDA: With the aid of this function, you can rescale the input value of e.g. 19,5 mA (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.
	Rescaling the measuring input values, OFFA: With the aid of this function, you can rescale the input value of e.g. $3,5 \mathrm{~mA}$ (works setting) without applying a measuring signal. If sensor calibration has been selected, these parameters are not available.

Setting the tare/offset value, TARR:
Default: 0

Menu level	Parameterization level
$\begin{aligned} & H 3-i \\ & \|\nabla \Delta\| \end{aligned}$	Hysteresis for limit values, HY-7: Default: 0000 For both limit values, a hysteresis function exists that reacts according to the functional principle (operating current / quiescent current).
	Function if display falls below / exceeds limit value, $\mathrm{FU}-7$: Default: HISH HI 9H \square Laus \square \square To indicate if the value falls below the lower limit value, LOUU can be selected (LOW = lower limit value) and if it goes above the upper limit value, $\boldsymbol{H} G H$ can be selected (HIGH = upper limit value). LOW corresponds to the quiescent current principle and HIGH to the operating current principle.
$\begin{array}{c\|c\|} \hline L i & -\Xi \\ \mid \nabla & \Delta \\ \mid \nabla & \end{array}$	Limit value / limits, LL-2: Default: 0300 For both limit values, two different values can be parameterized. With this, the parameters for each limit value are called up one after the other.
HU-2	Hysteresis for limit values, $\mathrm{Hy}-\mathrm{z}$: Default: 0000 For both limit values, a hysteresis function exists that reacts according to the functional principle (operating current / quiescent current).
$\begin{aligned} & F_{\Delta}-\beth \\ & \|\nabla \Delta\| \end{aligned}$	Function if display falls below / exceeds limit value, FU-2: Default: HISH $\text { Hi } 9 H$ \square To indicate if the value falls below the lower limit value, LOUU can be selected (LOW = lower limit value) and if it goes above the upper limit value, HIGH can be selected (HIGH = upper limit value). LOW corresponds to the quiescent current principle and HIGH to the operating current principle.

Menu level	Parameterization level
	Setting the code, CODE: Default: 1234 With this setting, it is possible to select an individual code (works setting 1234) for locking the keyboard. To lock/release the key, proceed according to menu item RUM.
$\begin{aligned} & \|5\|[L \mid \\ & \|\nabla \boxed{\Delta}\| \end{aligned}$	Supporting points - number of additional supporting points, SPCT: Default: 0 In addition to the start and end value, 8 extra supporting points can be defined to linearise nonlinear sensor values. Only the activated set point parameters are displayed.
$\begin{array}{\|l\|l\|l\|} \hline a_{1}^{\prime} & 5 & \ddots \\ \hline & \nabla & \Delta \\ \hline \end{array}$	Display values for supporting points, D151... D155: Under this parameter the supporting points are defined on a value basis. At the sensor calibration one will be asked at the end (like at final value/offset, too), if a calibration shall be triggered.
$\begin{array}{l\|l\|l\|} \hline i n & \square & i \\ 4 & \nabla & \Delta \end{array}$	Analogue values for supporting points, IMPI ... IMPB: Supporting points are only displayed under works calibration (4-20 mA). Here you can choose your analog values. The entry of constantly rising values need to be done self-contained.

6. Reset to default values

To return the unit to a defined basic state, a reset can be carried out to the default values.
The following procedure should be used:

- Switch off the power supply
- Press button [P]
- Switch on voltage supply and press [P]-button until" is shown in the display.

With reset, the default values of the program table are loaded and used for subsequent operation. This puts the unit back to the state in which it was supplied.

Caution! All application-related data are lost.

7. Functional principle of the switching points

Limit value exceedance "HIGH"
The setpoint S1-S2 is "off" below the threshold and "on" on reaching the threshold.

Limit value undercut "LOL"

The setpoint S1-S2 is "on" below the threshold and switched "off" on reaching the threshold.

Alarms / optical switching point display

An activated switching point can be optically indicated by flashing of the 7-segment display.

Functional principle of the alarms	
Alarm	Deactivated, display value
Threshold	Threshold/limit value for switch over
Hysteresis	Width of the window between the thresholds
Operating principle	Limit value exceedance / limit value undercut

8. Technical data

Housing				
Dimensions	$96 \times 24 \times 60 \mathrm{~mm}$ (BxHxD)			
	$96 \times 24 \times 74 \mathrm{~mm}$ (BxHxD) including plug-in terminal			
Panel cut-out	$92.0^{+0.8} \times 22.2^{+0.3} \mathrm{~mm}$			
Insulation thickness	up to 3 mm			
Fixing	snap-in screw element			
Material	PC Polycarbonate, black, UL94V-0			
Sealing material	EPDM, 65 Shore, black			
Protection class	standard IP65 (front), IP00 (back side)			
Weight	approx. 200 g			
Connection	plug-in terminal; wire cross section up to $2.5 \mathrm{~mm}^{2}$			
Display				
Digit height	14 mm			
Segment colour	red (optional green, orange or blue)			
Display range	-1999 to 9999			
Setpoints	optical display flashing			
Overflow	horizontal bars at the top			
Underflow	horizontal bars at the bottom			
Display time	0.1 to 10.0 seconds			
Input	Measuring range	Ri	Measuring fault	Digit
min. -22...max. 24 mA	0/4-20 mA	$\sim 100 \Omega$	0.1 \% of measuring range	± 1
min. -12...max. 12 VDC	0-10 VDC	$\sim 200 \mathrm{k} \Omega$	0.1 \% of measuring range	± 1
Accuracy				
Temperature drift	$100 \mathrm{ppm} / \mathrm{K}$			
Measuring time	0.1... 10.0 seconds			
Measuring principle	U/F-conversion			
Resolution	approx. 18 bit at 1s measuring time			
Power pack	$\begin{aligned} & 230 \text { VAC } \pm 10 \% \text { max. } 3 \text { VA } \\ & 24 \text { VDC } \pm 10 \% \text { max. } 1 \text { VA } \end{aligned}$			
Memory	EEPROM			
Data life	≥ 100 years at $25^{\circ} \mathrm{C}$			

Ambient conditions			
Working temperature	$0^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}$		
Storing temperature	$-20^{\circ} \mathrm{C} \ldots 80^{\circ} \mathrm{C}$		
Weathering resistance	relative humidity $0-80 \%$ on years average without dew		
EMV	EN 61326		
CE-sign			Conformity to directive 2004/108/EG

9. Safety advice

Please read the following safety advice and the assembly chapter 2 before installation and keep it for future reference.

Proper use

The DAP-101--device is designed for the evaluation and display of sensor signals.

Danger! Careless use or improper operation can result in personal injury and/or damage to the equipment.

Control of the device

The panel meters are checked before dispatch and sent out in perfect condition. Should there be any visible damage, we recommend close examination of the packaging. Please inform the supplier immediately of any damage.

Installation

The DAp-101-device must be installed by a suitably qualified specialist (e.g. with a qualification in industrial electronics).

Notes on installation

- There must be no magnetic or electric fields in the vicinity of the device, e.g. due to transformers, mobile phones or electrostatic discharge.
- The fuse rating of the supply voltage should not exceed a value of 6A N.B. fuse.
- Do not install inductive consumers (relays, solenoid valves etc.) near the device and suppress any interference with the aid of RC spark extinguishing combinations or free-wheeling diodes.
- Keep input, output and supply lines separate from each other and do not lay them parallel with each other. Position "go" and "return lines" next to one another. Where possible use twisted pair. So, the best measuring results can be received.
- Screen off and twist sensor lines. Do not lay current-carrying lines in the vicinity. Connect the screening on one side on a suitable potential equaliser (normally signal ground).
- The device is not suitable for installation in areas where there is a risk of explosion.
- Any electrical connection deviating from the connection diagram can endanger human life and/or can destroy the equipment.
- The terminal area of the devices is part of the service. Here electrostatic discharge needs to be avoided. Attention! High voltages can cause dangerous body currents.
- Galvanic insulated potentials within one complex need to be placed on a appropriate point (normally earth or machines ground). So, a lower disturbance sensibility against impacted energy can be reached and dangerous potentials, that can occur on long lines or due to faulty wiring, can be avoided.

10. Error elimination

	Error description	Measures
1.	The unit permanently indicates overflow.	- The input has a very high measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly.
2.	The unit permanently shows underflow. - The input has a very low measurement, check the measuring circuit. - With a selected input with a low voltage signal, it is only connected on one side or the input is open. - Not all of the activated switching points are parameterised. Check if the relevant parameters are adjusted correctly.	
3.	The word "HELP" lights up in the 7 -segment display.	- The unit has found an error in the configuration memory. Perform a reset to the default values and re-configure the unit according to your application.
4.	Program numbers for parameterising of the input are not accessible.	- Programming lock is activated - Enter correct code
5.	"ERRI" lights up in the 7-segment display	- Please contact the manufacturer if errors of this kind occur.
6.	The device does not react as expected.	- If you are not sure if the device has been parameterised before, then follow the steps as written in chapter 6 and set it back to its delivery status.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

