ACS-Control System GmbH

Industrial and process controller MIR-491

По вопросам продаж и поддержки обращайтесь:

[^0]Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Contents

1 Mounting 5
2 Electrical connections 6
2.1 Connecting diagram 6
2.2 Terminal connection. 7
3 Operation 10
3.1 Front view 10
3.2 Behaviour after power-on 11
3.3 Operating level 11
3.4 Mainenance manager / Error list 12
3.5 Self-tuning 14
3.5.1 Selecting the method (LanF/EnEr/LunE) 15
3.5.2 Self-tuning start 15
3.5.3 Optimization at the set-point 16
3.5.4 Self-tuning cancellation 17
3.5.5 Acknowledgement procedures in case of unsuccessful self-tuning 17
3.5.6 Examples for self-tuning attempts 17
3.6 Manual self-tuning 19
3.7 Alarm handling. 20
3.8 Operating structure. 21
4 Configuration level 22
4.1 Configuration survey. 22
4.2 Configuration parameters 23
4.3 Set-point processing 39
4.4 MIR-491 cooling functions 40
4.4.1 Standard ([y[L= 40
4.4.2 Water cooling linear ($[4[\mathrm{~L}=\mathrm{i}$) 40
4.4.3 Water cooling non-linear ($\mathrm{CyCL}=\boldsymbol{\mathrm { C }}$) 41
4.4.4 Heating and cooling with constant period ($[5[\mathrm{~L}=\Xi)$ 42
4.5 Configuration examples 43
4.5.1 Signaller (inverse) 43
4.5.2 2-point controller (inverse) 44
4.5.3 3-point controller (relay \& relay) 45
4.5.4 $\quad 3$-point stepping controller (relay \& relay) 46
4.5.5 Continuous controller (inverse) 47
4.5.6 $\quad \Delta$ - Y - Off controller 48
4.5.7 MIR-491 with measured value output. 49
5 Parameter setting level 50
5.1 Parameter survey 50
5.2 Parameters 51
5.3 Input scaling 53
5.3.1 Input 1 nP. 1 and 1 nP. 3 54
5.3.2 Input in $\mathrm{n}^{2} \mathrm{Z}$. 54
5.4 Second set of parameters 54
6 Calibration level 55
7 Special functions 58
$7.1 \mathrm{DAC}^{\circledR}-$ motor actuator monitoring 58
7.2 MIR-491 as Modbus master 60
8 BlueControl 61
9 Versions 62
10 Technical data. 63
11 Safety hints 68
11.1 Resetting to factory setting. 69
12 Notes 70
13 Index 74

1 Mounting

Safety switch:

For access to the safety switch, the controller must be withdrawn from the housing. Squeeze the top and bottom of the front bezel between thumb and forefinger and pull the controller firmly from the housing.

Loc	open closed ©	Access to the levels is as adjusted by means of BlueControl (engineering tool) all levels accessible wihout restriction
(1) Factory setting	(2) Default setting: display of all levels	
suppressed, password		

Caution! The unit contains ESD-sensitive components.

2 Electrical connections

2.1 Connecting diagram

(i) The controller is fitted with flat-pin terminals $1 \times 6,3 \mathrm{~mm}$ or $2 \times 2,8 \mathrm{~mm}$ to DIN 46244

2.2 Terminal connection

Power supply connection (1)

See chapter 10 "Technical data"

Connection of outputs OUT1/2

(2)

Relay outputs ($250 \mathrm{~V} / 2 \mathrm{~A}$), potential-free changeover contact

Connection of outputs OUT3/4 (3
a relay $(250 \mathrm{~V} / 2 \mathrm{~A})$, potential-free changeover contact universal output
b current ($0 / 4 \ldots . .20 \mathrm{~mA}$)
c voltage $(0 / 2 \ldots 10 \mathrm{~V})$
d transmitter supply
e logic ($0 . .20 \mathrm{~mA} / 0 . .12 \mathrm{~V}$)
(2) OUT1/2 heating/cooling

Connection of input INP1

4

Input for variable x1 (process value)
a thermocouple
b resistance thermometer (Pt100/ Pt1000/ KTY/ ...)
c current ($0 / 4 \ldots 20 \mathrm{~mA}$)
d voltage ($0 / 2 \ldots 10 \mathrm{~V}$)

Connection of input INP2 5

a Heating current input ($0 . . .50 \mathrm{~mA} \mathrm{AC}$) or input for ext. set-point ($0 / 4 \ldots . .20 \mathrm{~mA}$)
b Potentiometer input for position feedback

Connection of input INP3

As input INP1, but without voltage
Connection of inputs dil, di2
Digital input, configurable as switch or push-button

Connection of inputs di2/3 8 (option)
(5) INP2 current tansformer

Digital inputs (24VDC external), galvanically isolated, configurable as switch or push-button

Connection of output U_{T} (9) (option)

Supply voltage connection for external energization

Connection of outputs OUT5/6 (10 (option)

Digital outputs (opto-coupler), galvanic isolated, common positive control voltage, output rating: 18...32VDC

Connection of bus interface (11) (option)

RS422/485 interface with Modbus RTU protocol

89 di2/3, 2-wire transmitter supply

3 OUT3 transmitter supply

If the universal output OUT3 or OUT4 is used there may be no external galvanic connection between measuring and output circuits!
(9) RS485 interface (with RS232-RS485 interface converter)

* Interface description Modbus RTU in speperate manual: see page 62.
(3) OUT3 as logic output with solid-state relay (series and parallel connection)

MIR-491 connecting example:

.
CAUTION: Using a temperature limiter is recommendable in systems where overtemperature implies a fire hazard or other risks.

3 Operation

3.1 Front view

LED colours:
LED 1, 2, 3, 4: yellow Bargraph: other LEDs: red
(1) Status of switching outputs Dut.i... 5
(2) Process value display
(3) Set-point, controller output
(4) Signals display on ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
(5) Signals [ant and PRAR level
(6) Signals aktive function key
(7) Self-tuning active
(8) Entry in error list
(9) Bargraph or clear text display
(10) $5 P .2$ is effective
(11) SPE is effective
(2) Set-point gradient effective
(13) Manual/automatic switch-over:

Off: Automatic
On: Manual (changing possible)
Blinks: Manual (changing not possible $(\rightarrow$ Lanf/Entr/aRn $)$
Enter key: calls up extended operating level / error list
(15) Up/down keys: changing the set-point or the controller output value
(10) Manual mode $/ \mathrm{spec}$. function $(\rightarrow$ [anF /La口t $)$
(1) Freely programmable function key
(18) PC connection for BlueControl (engineering tool)
(2) In the upper display line, the process value is always displayed. At parameter, configuration, calibration as well as extended operating level, the bottom display line changes cyclically between parameter name and parameter value.

3.2 Behaviour after power-on

After supply voltage switch-on, the unit starts with the operating level.
The unit is in the condition which was active before power-off.
If MIR-491 was in manual mode before power-off, the controller starts with correcting value Y 2 after switching on again.

3.3 Operating level

The content of the extended operating level is determined by means of BlueControl (engineering tool). Parameters which are used frequently or the display of which is important can be copied to the extended operating level.

$\downarrow \uparrow{ }_{\text {out }}^{\text {time }}$
Error list (if error exists)

3.4 Mainenance manager / Error list

With one or several errors, the extended operating level always starts with the error list. Signalling an actual entry in the error list (alarm, error) is done by the Err LED in the display. To reach the error list press \square twice.

Err LED status	Signification	Proceed as follows
blinks	Alarm due to existing error	- Determine the error type in the error list via the error number - Remove the error
lit	Error removed, Alarm not acknowledged	- Acknowledge the alarm in the error list pressing key Δ or ∇ -The alarm entry was deleted.
off	No error, all alarm entries deleted	

Error list:

Name	Description	Cause	Possible remedial action
E. 1	Internal error, cannot be removed	- E.g. defective EEPROM	- Contact ACS service - Return unit to our factory
E. 2	Internal error, can be reset	- e.g. EMC trouble	- Keep measurement and power supply cables in separate runs - Ensure that interference suppression of contactors is provided
$E .3$	Configuration error, can be reset	- wrong configuration - missing configuration	- Check interaction of configuration / parameters
FbF. 1	Sensor break INP1	- Sensor defective - Faulty cabling	- Replace INP1 sensor - Check INP1 connection
5ht.	Short circuit INP1	- Sensor defective - Faulty cabling	- Replace INP1 sensor - Check INP1 connection
PGL. 1	INP1polarity error	- Faulty cabling	Reverse INP1 polarity
Fbr.e	Sensor break INP2	- Sensor defective - Faulty cabling	- Replace INP2 sensor - Check INP2 connection
$5 h t .2$	Short circuit INP2	- Sensor defective - Faulty cabling	- Replace sensor INP2 - Check INP2 connection
PGL. ${ }^{\text {P }}$	INP2 polarity	- Faulty cabling	Reverse INP2 polarity
Fbr 3	Sensor break INP3	- Sensor defective - Faulty cabling	- Replace INP3 sensor - Check INP3 connection
$5 h .3$	Short circuit INP3	- Sensor defective - Faulty cabling	- Replace sensor INP3 - Check INP3 connection
P0L. 3	INP3 polarity	- Faulty cabling	- Reverse INP3 polarity

Name	Description	Cause	Possible remedial action
HER	Heating current alarm (HCA)	- Heating current circuit interrupted, $\mathrm{I}<\mathrm{HE} \mathrm{CA}$ or I> HL.S (dependent of configuration) - Heater band defective	- Check heating current circuit - If necessary, replace heater band
55.	Heating current short circuit (SSR)	- Current flow in heating circuit with controller off - SSR defective	- Check heating current circuit - If necessary, replace solid-state relay
L00P	Control loop alarm (LOOP)	- Input signal defective or not connected correctly - Output not connected correctly	- Check heating or cooling circuit - Check sensor and replace it, if necessary - Check controller and switching device
Raf.h	Self-tuning heating alarm (ADAH)	- See Self-tuning heating error status	- see Self-tuning heating error status
RdA.E	Self-tuning heating alarm cooling (ADAC)	- See Self-tuning cooling error status	- see Self-tuning cooling error status
Lin.t	stored limit alarm 1	- adjusted limit value 1 exceeded	- check process
L 18.2	stored limit alarm 2	- adjusted limit value 2 exceeded	- check process
Lin. 3	stored limit alarm 3	- adjusted limit value 3 exceeded	- check process
InF. 1	time limit value message	- adjusted number of operating hours reached	- application-specific
$1 \mathrm{nF} . \mathrm{S}$	duty cycle message (digital ouputs)	- adjusted number of duty cycles reached	- application-specific

(2)

Saved alarms (Err-LED is lit) can be acknowledged and deleted with the digital input di1/2/3, the F-key or the
Configuration, see page 30: [anF/LDEI/Err.r
(i)

If an alarm is still valid that means the cause of the alarm is not removed so far (Err-LED blinks), then other saved alarms can not be acknowledged and deleted.

Error status:

Error status	Signification	
z	Existing error	Change to error status 1 after error removal
\dot{Z}	Stored error	Change to error status 0 after acknowledgement in error list
\square	No error/message	not visible, except with acknowledgement

Self-tuning heating (RdRA) and cooling (RdRE) error status:

Error status	Description	Behaviour
\square	No error	
3	Faulty control action	Re-configure controller (inverse \leftrightarrow direct)
4	No response of process variable	The control loop is perhaps not closed: check sensor, connections and process
5	Low reversal point	Increase (RdRA) max. output limiting HiH or decrease (RaRIL) min. output limiting a
5	Danger of exceeded set-point (parameter determined)	If necessary, increase (inverse) or reduce (direct) set-point
7	Output step change too small $(\mathrm{dy}>5 \%)$	Increase (F dR.H) max. output limiting SH or reduce (GdALE) min. output limiting YIL a
\square	Set-point reserve too small	Increase set-point (invers), reduce set-point (direct) or increase set-point range
9	Impulse tuning failed	The control loop is perhaps not closed: check sensor, connections and process

DAC function (ARE) error status:

Error status	Description	Behaviour
\square	No error	
3	Output is blocked	Check the drive for blockage
4	Wrong method of operation	Wrong phasing, defect motor capacitor
5	Fail at Yp measurement	Check the connection to the Yp input
5	Calibration error	Manual calibration necessary

3.5 Self-tuning

After starting by the operator, the controller makes a self-tuning attempt. The controller uses the process characteristics for quick line-out to the set-point without overshoot.
Self-tuning start can be locked via BlueControl (engineering tool) (PLDG).
E_{1} and $t d$ are taken into account only, if they were \neq RFF previously.

3.5.1 Selecting the method (EanF/Entr/EunE)

$$
\begin{aligned}
& \text { EunE }=0 \quad \text { Step attempt during start-up (if } X \quad S P-60 K \text {): } \\
& \text { The controller outputs } 0 \% \text { or } 4 . \mathrm{L} \text { a and waits, until the process } \\
& \text { is at rest. This is followed by: } \\
& \text { 2-point controller: step attempt for heating loop. Then, } \\
& \text { the determined parameters are used for } \\
& \text { line-out to the set-point. } \\
& 3 \text {-point controller: as } 2 \text {-point controller. Now, the heating } \\
& \text { output is frozen and a cooling pulse } \\
& \text { (100\%) for the cooling loop is output. } \\
& \text { After determination of cooling parameters, } \\
& \text { control is continued using the heating } \\
& \text { and cooling parameters. } \\
& \text { EunE }=1 \quad \text { Pulse attempt during start-up (if } X \quad S P-60 K \text {): } \\
& \text { Controller outputs } 0 \% \text { or } 4.2 \text { and waits, until the process is } \\
& \text { at rest. This is followed by: } \\
& \text { 2-point controller: pulse attempt (100\%) for heating loop. } \\
& \text { followed by line-out to the set-point using } \\
& \text { the determined parameters. } \\
& \text { 3-point controller: as 2-point controller. The heating output } \\
& \text { is frozen and a cooling pulse (} 100 \% \text {) for } \\
& \text { the cooling loop is output. } \\
& \text { After determination of cooling parameters, } \\
& \text { control is continued using the heating } \\
& \text { and cooling parameters. } \\
& \text { EunE = always step attempt during start-up: see } \mathrm{EunE}=\mathrm{B}
\end{aligned}
$$

With 3-point stepping controller configured, only the step attempt after start-up is available for self-tuning $(\mathrm{EunE}=\mathrm{B})$.

3.5.2 Self-tuning start

$5 L E E=\square$	Only manual start by pressing keys \square and simultaneously or via interface is possible.
$5 L E E=1$	Manual start by press keys Ξ and \square simultaneously via interface and automatic start after power-on and detection of process oscillations.

(i)

If the process value is higher than the set-point minus $60 \mathrm{~K}(\mathrm{X} \geq \mathrm{SP}-60 \mathrm{~K})$ and self-tuning is started manually, the control to the set-point is using the old parameters followed by an optimization at the set-point.

If the process value is smaller than the set-point minus $60 \mathrm{~K}(\mathrm{X} \leq \mathrm{SP}-60 \mathrm{~K})$, self-tuning after start-up is done automatically by the controller ($\mathrm{EunE}=\mathrm{I} / \mathrm{i}$).
If the controller detects process oscillations of more than $\pm 2,5 \mathrm{~K}$ with $55-\mathrm{E}=\mathrm{I}$ configured, the control parameters are preset for calming the process followed by optimization at the set-point.

Ada LED status	Signification
blinks	Waiting, until process calms down
lit	Self-tuning is running
off	Self-tuning not activ or ended

3.5.3 Optimization at the set-point

With the difference between process value and set-point smaller than 60 K and self-tuning started manually, optimization at the set-point is used.
For this, control to the set-point is using the control parameters.
When the process value has reached the set-point, a pulse attempt with reduced correcting variable (for process protection, max. 20\%) is made with the active loop ($\exists>0$ heating pulse, $\zeta<0$ cooling pulse). I.e. by optimization at the set-point, the optimum control parameters either for the heating or the cooling loop are determined.
The correcting variable pulse can be output by the controller in positive or negative direction. If possible, the controller outputs a pulse in negative direction (process protection against temperature increase).

[-4 In which case does the controller use the optimization at the set-point?

- Process \geq set-point - 60 K with manual self-tuning start
- after step attempt failure after start-up or power-on
 start or self-tuning start after power on
 self-tuning start or self-tuning start after power-on

3.5.4 Self-tuning cancellation

By the operator:

Self-tuning can always be cancelled by the operator. For this, press \square and Δ key simultaneously. With manual-automatic switch-over configured via 圈 key, self-tuning can also be canceled by actuating 图 key. The controller continues operating with the old parameters in automatic mode in the first case and in manual mode in the second case.

By the controller:

If the Err LED starts blinking whilst self-tuning is running, successful self-tuning is prevented due to the control conditions. In this case, self-tuning was cancelled by the controller. The controller continues operating with the old parameters in automatic mode. In manual mode it continues with the old controller output value.

3.5.5 Acknowledgement procedures in case of unsuccessful self-tuning

1. Press keys \square and Δ simultaneously:

The controller continues controlling using the old parameters in automatic mode. The Err LED continues blinking, until the self-tuning error was acknowledged in the error list.
2. Press key (if configured):

The controller goes to manual mode. The Err LED continues blinking, until the self-tuning error was acknowleged in the error list.
3. Press key \square :

Display of error list at extended operating level. After acknowledgement of the error message, the controller continues control in automatic mode using the old parameters.

Cancellation causes:

\rightarrow page 14: "Error status self-tuning heating (RdR.H) and cooling (RdR.E)"

3.5.6 Examples for self-tuning attempts (controller inverse, heating or heating/cooling)

Start: heating power switched on

 Heating power Y is switched off (1). When the change of process value X was constant during one minute (2), the power is switched on (3).At the reversal point, the self-tuning attempt is finished and the new parameter are used for controlling to
 set-point W.

Start: heating power switched off The controller waits 1,5 minutes (1). Heating power Y is switched on (2). At the reversal point, the self-tuning attempt is finished and control to the set-point is using the new parameters.

Self-tuning at the set-point 4
The process is controlled to the set-point. With the control deviation constant during a defined time (1), i.e. with the process value equal to the set-point, the controller outputs a reduced correcting variable pulse (max. 20\%) (2). After determination of the control parameters using the process characteristic (3), control is started using the new parameters (4).

Three-point controller

The parameter for heating and cooling are determined in two attempts. The heating power is switched on (1). Heating parameters $P \mathrm{~B}:, \mathrm{E}_{1}$, td \dot{f} and $t:$ are determined at the reversal point. The process is controlled to the set-point (2). With constant control deviation, the controller provides a cooling
 correcting variable pulse (3). After
 process characteristics, control operation is started using the new parameters (5).

During phase (3, heating and cooling are done simultaneously!

3.6 Manual self-tuning

The optimization aid should be used with units on which the control parameters shall be set without self-tuning.
For this, the response of process variable x after a step change of correcting variable y can be used. Frequently, plotting the complete response curve (0 to 100%) is not possible, because the process must be kept within defined limits. Values T_{g} and $\mathrm{x}_{\max }$ (step change from 0 to 100%) or $\Delta \mathrm{t}$ and $\Delta \mathrm{x}$ (partial step response) can be used to determine the maximum rate of increase $\mathrm{v}_{\text {max }}$.

$$
\begin{aligned}
\mathrm{y}= & \text { correcting variable } \\
\mathrm{Y}_{\mathrm{h}} & =\text { control range } \\
\mathrm{Tu}= & \text { delay time }(\mathrm{s}) \\
\mathrm{Tg}= & \text { recovery time }(\mathrm{s}) \\
\mathrm{X}_{\max }= & \text { maximum process value } \\
\mathrm{V}_{\max }= & \frac{X \max }{T g}=\frac{\Delta x}{\Delta t} \triangleq \text { max. rate of } \\
& \text { increase of process value }
\end{aligned}
$$

The control parameters can be determined from the values calculated for delay time T_{u}, maximum rate of increase $v_{\text {max }}$, control range X_{h} and characteristic K according to the formulas given below. Increase Xp , if line-out to the set-point oscillates.

Parameter adjustment effects

Parameter	Control	Line-out of disturbances	Start-up behaviour
Pb $:$ higher	increased damping	slower line-out	slower reduction of duty cycle
lower	reduced damping	faster line-out	faster reduction of duty cycle
Ed	higher	reduced damping	faster response to disturbances
faster reduction of duty cycle			
lower	increased damping	slower response to disturbances	slower reduction of duty cycle
E $:$	higher	increased damping	slower line-out

Formulas

$\mathrm{K}=\mathrm{Vmax} * \mathrm{Tu}$
With 2-point and 3-point controllers, the cycle time must be adjusted to
t: にコ $\leq 0,25^{*} \mathrm{Tu}$

controller behavior	Pb ${ }^{\text {[}}$ [phy. units]	Ld: [s]	L. 1 [s]
PID	1,7*K	2*Tu	2* Tu
PD	0,5 * K	Tu	[FF
PI	2,6*K	RFF	6* Tu
P	K	[FF	[FF
3-point-stepping	1,7*K	Tu	2* Tu

3.7 Alarm handling

Max. three alarms can be configured and assigned to the individual outputs. Generally, outputs it.t... ituch can be used each for alarm signalling. If more than one signal is linked to one output the signals are OR linked. Each of the 3 limit values Lini. ... L ini.l has 2 trigger points H.x (Max) and L.x (Min), which can be switched off individually (parameter = "IFF"). Switching difference ${ }^{45} 5$ of each limit value is adjustable.

L. $1=$ DFF

H. $\mathrm{I}=\mathrm{BFF}$
H. $\mathrm{i}=\mathrm{BFF}$

(1): normally closed ($\operatorname{ConF} / \mathrm{But} x / \mathrm{BRGL}=\mathrm{f}$)
(2) normally open ($\operatorname{ConF} /$ But.x/RAct $=0$)

The variable to be monitored can be selected seperately for each alarm via configuration
The following variables can be monitored:

- process value
- control deviation xw (process value - set-point)
- control deviation xw + suppression after start-up or set-point change
- effective set-point Weff
- correcting variable y (controller output)
(i)

If measured value monitoring + alarm status storage is chosen ($\mathrm{CanF} / \mathrm{L}$ in /
Fnc.x $=\mathbf{a}^{3}$), the alarm relay remains switched on until the alarm is resetted in the

3.8 Operating structure

After supply voltage switch-on, the controller starts with the operating levels. The controller status is as before power off.

 display line is lit continuously.
[anF - level: At [anF - level, the right decimal point of bottom display line blinks When safety switch Loc is open, only the levels enabled by means of BlueControl (engineering tool) are visible and accessible by entry of the password adjusted by means of BlueControl (engineering tool). Individual parameters accessible without password must be copied to the extended operating level.

Factory setting: Safety switch Loc closed: all levels accessible without restriction, password PR55 = MF F .

4 Configuration level

4.1 Configuration survey

Eanf		Configuration level																
$\stackrel{\square}{\square}$	Lotr Control and self-tuning																	
	$5 \mathrm{P} . \mathrm{F}_{0}$	L.Lyp	L.Fnc	nin	ERGE	FR1:	rnbil	rnbit	[yEL	tunt	5trt							
	1 nP .1 Input 1																	
	5LYP	5.1 in	Carr															
	1nP.2																	
	1.fac	5.549	Earr	$1 \mathrm{n} . \mathrm{F}$														
	$1 P^{\prime} 3$ Input 3																	
	1.Fnc	5.1 in	S.Typ	[arr	i n. F													
	L 1 号	Limit value functions																
	Fnc. 1	5re.	Fnc.l	5rc. 3	Fnc. 3	5, 6.3	HL.FL	LP.PL	dRE. $\mathrm{S}^{\text {d }}$									
	Dut. 1 Output 1																	
	BRat	3.1	4.2	L in. 1	L in. ${ }^{2}$	L in. 3	dic.f	LP.RL	HL.aL	H2.5[P.End	FR. 1	FR 1.2	F9.3				
	ant. Output 2 aut. 3 Output 3			see output 1														
	Disy	ORct	4.1	4.2	Lin. 1	L in. ${ }^{2}$	L in. 3	dRe.f	LPRL	HLRE	H.5.	PEnd	Fri.i	F9, ${ }^{2}$	F9 9.3	But. 0	Aut. 1	0.50
	-uti.4 Output 4																	
	D. 5 ¢	BRact	4.1	4.2	L1 n : 1		14.3	dras	LP.RL	HLSE	H. $5[$	PEnd	FR. 1	F9, E^{2}	F9. 3	But. 0	But. 1	0.5 rc
	Dut.5 Output 5 Dut.5 Output 6 Lafi Digital inputs			see out see out	tput 1 tput 1													
	L, r	$5 P .2$	5 PE	4.2	45	\therefore 为	E.aFF	nitas	Err.r	P. 1.5	1.5h5	d.fn						
	othr Display, operation, interface																	
	brud	Addr	Prty	dELY	Linit	d^{P}	LEd	d) 59	C.dEL									

Adjustment:

- The configuration can be adjusted by means of keys Δ
- After the last configuration of a group, danE is displayed and followed by automatic change to the next group
(i) Return to the beginning of a group is by pressing the key for $\mathbf{3} \mathbf{~ s e c}$.

Configuration level

4.2 Configuration parameters

Entr

Name	Value range	Description	Default
50.50		Basic configuration of setpoint processing	0
	0	set-point controller can be switched over to external set-point (->1 TLI / SPE)	
	8	standard controller with external offset (5PE)	
[.LyP		Calculation of the process value	0
	0	standard controller (process value $=$ InP.1)	
	1	ratio controller (InP.1/X2)	
	2	difference (InP.1-X2)	
	3	Maximum value of InP.1and X2. It is controlled with the bigger value. At sensor failure it is controlled with the remaining actual value.	
	4	Minimum value of InP.1 and X2. It is controlled with the smaller value. At sensor failure it is controlled with the remaining actual value.	
	5	Mean value (InP.1, X2). With sensor error, controlling is continued with the remaining process value.	
	6		
F.FのE		Control behaviour (algorithm)	1
	0	on/off controller or signaller with one output	
	1	PID controller (2-point and continuous)	
	2	$\Delta / \mathrm{Y} / \mathrm{Off}$, or 2-point controller with partial/full load switch-over	
	3	$2 \times$ PID (3-point and continuous)	
	4	3 -point stepping controller	
	5	3-point stepping controller with position feedback Yp	
	6	continuous controller with integrated positioner	
		Manual operation permitted	0
	0	no	
	1		
F.REL		Method of controller operation	0
	0	inverse, e.g. heating	
	1	direct, e.g. cooling	
FRI:		Behaviour at sensor break	1
	0	controller outputs switched off	
	1	$\mathrm{y}=\mathrm{Y} 2$	
	2	$y=$ mean output. The maximum permissible output can be adjusted with parameter $\sqrt{4} .4$. To prevent determination of inadmissible values, mean value formation is only if the control deviation is lower than parameter $.4 \frac{3}{2}$.	

Configuration level

Name	Value range	Description	Default
rorut	－1999．．． 9999	X0（low limit range of control） 1	0
rnsuth	－1999．．． 9999	X100（high limit range of control） 1	900
［351		Characteristic for 2－point－and 3－point－controllers	0
	0	standard	
	1	water cooling linear	
	2	water cooling non－linear	
	3	with constant cycle	
LunE		Auto－tuning at start－up	0
	0	At start－up with step attempt，at set－point with impulse attempt	
	1	At start－up and at set－point with impulse attempt．Setting for fast controlled systems（e．g．hot runner control）	
	2	Always step attempt at start－up	
ら上ナ！		Start of auto－tuning	0
	0	Manual start of auto－tuning	
	1	Manual or automatic start of auto－tuning at power on or when oscillating is detected	
Hat		Optimization of T1，T2（only visible with BlueContro！！）	0
	0	Automatic optimization	
	1	No optimization	

（1）infle and intit are indicating the range of control on which e．g．the self－tuning is refering

inP． 1

Name	Value range	Description	Default
5.159		Sensor type selection	1
	0	thermocouple type L（－100 ．．．900 ${ }^{\circ} \mathrm{C}$ ）， $\mathrm{Fe}-\mathrm{CuNi}$ DIN	
	1	thermocouple type $\mathrm{J}\left(-100 \ldots 1200^{\circ} \mathrm{C}\right)$ ， $\mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type $\mathrm{K}\left(-100 \ldots 1350^{\circ} \mathrm{C}\right)$ ， $\mathrm{NiCr}-\mathrm{Ni}$	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$ ，Nicrosil－Nisil	
	4	thermocouple type S（ $\left.0 \ldots .1760^{\circ} \mathrm{C}\right)$ ，PtRh－Pt10\％	
	5	thermocouple type R（ $0 . . .1760^{\circ} \mathrm{C}$ ），PtRh－Pt13\％	
	6	thermocouple type T $\left(-200 \ldots .400^{\circ} \mathrm{C}\right), \mathrm{Cu}-\mathrm{CuNi}$	
	7	thermocouple type C（ $0 \ldots . .2315^{\circ} \mathrm{C}$ ），W5\％Re－W26\％Re	
	8	thermocouple type D（ $0 \ldots . .2315^{\circ} \mathrm{C}$ ），W3\％Re－W25\％Re	
	9	thermocouple type E（－100 ．．1000 $\left.{ }^{\circ} \mathrm{C}\right)$ ， $\mathrm{NiCr}-\mathrm{CuNi}$	
	10	thermocouple type B（ $0 / 100 \ldots 1820^{\circ} \mathrm{C}$ ），PtRh－Pt6\％	
	18	special thermocouple	
	20	Pt100（－200．0 ．．．100， $0^{\circ} \mathrm{C}$ ）	
	21	Pt100（ $-200.0 \ldots 850,0^{\circ} \mathrm{C}$ ）	
	22	Pt1000（－200．0 ．．． $200.0{ }^{\circ} \mathrm{C}$ ）	

Name	Value range	Description	Default
	23	KTY 11-6 (special 0...4500 0hm)	
	24	special 0... 450 Ohm	
	30	0... $20 \mathrm{~mA} / 4 \ldots . .20 \mathrm{~mA}$	
	40	0...10V/2..10V (1)	
	41	special 0... 100 mV (1)	
	50	potentiometer 0... 160 Ohm	
	51	potentiometer 0... 450 Ohm	
	52	potentiometer 0...1600 Ohm	
	53	potentiometer 0... 4500 Ohm	
5.1 ln		$\begin{aligned} & \text { Linearization (only at } 5.5 \mathrm{IP}=23(\mathrm{KTY} 11-6), 24 \\ & (0 \ldots . .450 \mathrm{~W}), 30(0 . .20 \mathrm{~mA}), 40(0 . .10 \mathrm{~V}) \text { and } 41(0 . .100 \mathrm{mV})) \end{aligned}$	0
	0	none	
	1	Linearization to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
Earr		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [ML level)	
	2		
	3	Scaling (at PR,-9 level)	
FR1 1		Forcing INP1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

10 BP

Name	Value range	Description	Default
I.Fne		Function selection of INP2	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	external set-point (5P.E)	
	3	Yp input	
	4	Second process value X 2	
	5	Y.E input	
	6	no controller input (e.g. transmitter input instead)	
$5.24 P$		Sensor type selection	30
	30	$0 \ldots 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ (1)	
	31	0... 50 mA AC 1	
	50	Potentiometer ($0 \ldots .160 \mathrm{Ohm}$)	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)

Configuration level

Name	Value range	Description	Default
	51	Potentiometer ($0 . . .450$ Ohm)	
	52	Potentiometer ($0 . . .1600$ Ohm)	
	53	Potentiometer ($0 . . .4500$ Ohm)	
Far		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [ML level)	
	2	2-point correction (at [-HL level)	
	3		
10.6	-1999... 9999	Alternative value for error at INP2	AFF
FRIE		Forcing INP2 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

109.3

Name	Value range	Description	Default
1.5nE		Function selection of INP3	1
	0	no function (subsequent input data are skipped)	
	1	heating current input	
	2	external set-point (5PE)	
	3	Yp input	
	4	Second process value X2	
	5	Y.E input	
	6	no controller input (e.g. transmitter input instead)	
5.1		Linearization (only at S.tYP $=\mathbf{3 0}(\mathbf{0} . \mathbf{2 0 m A})$ and 40 (0.10V) adjustable)	0
	0	none	
	1	Linearization (only at $5.15=30(0 . .20 \mathrm{~mA})$ and 40 $(0 . .10 \mathrm{~V})$ adjustable) to specification. Creation of linearization table with BlueControl (engineering tool) possible. The characteristic for KTY 11-6 temperature sensors is preset.	
5.154		Sensor type selection	30
	0	thermocouple type L (-100 .. $900{ }^{\circ} \mathrm{C}$), Fe-CuNi DIN	
	1	thermocouple type $\mathrm{J}\left(-100 \ldots 1200^{\circ} \mathrm{C}\right)$, $\mathrm{Fe}-\mathrm{CuNi}$	
	2	thermocouple type $\mathrm{K}\left(-100 \ldots 1350^{\circ} \mathrm{C}\right), \mathrm{NiCr}-\mathrm{Ni}$	
	3	thermocouple type $\mathrm{N}\left(-100 \ldots 1300^{\circ} \mathrm{C}\right)$, Nicrosil-Nisil	
	4	thermocouple type S $\left(0 \ldots 1760^{\circ} \mathrm{C}\right)$, PtRh-Pt10\%	
	5	thermocouple type R ($0 \ldots . .1760^{\circ} \mathrm{C}$), PtRh-Pt13\%	
	6	thermocouple type $\mathrm{T}\left(-200 \ldots . .400^{\circ} \mathrm{C}\right), \mathrm{Cu}-\mathrm{CuNi}$	
	7	thermocouple type C ($0 \ldots . .2315^{\circ} \mathrm{C}$), W5\%Re-W26\%Re	
	8	thermocouple type D ($0 \ldots . .2315^{\circ} \mathrm{C}$), W3\%Re-W25\%Re	

Name	Value range	Description	Default
	9	thermocouple type E (-100 ...1000 ${ }^{\circ} \mathrm{C}$), NiCr-CuNi	
	10	thermocouple type B ($0 / 100 \ldots 1820^{\circ} \mathrm{C}$), PtRh-Pt6\%	
	18	special thermocouple	
	20	Pt100 ($-200.0 \ldots . .100,0^{\circ} \mathrm{C}$)	
	21	Pt100 (-200.0 $\left.\ldots .850,0^{\circ} \mathrm{C}\right)$	
	22	Pt1000 (-200.0 ... $200.0{ }^{\circ} \mathrm{C}$)	
	23	KTY 11-6 (special 0...4500 Ohm)	
	24	special 0... 450 Ohm	
	30	$0 \ldots . .20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$ (1)	
	41	special $0 \ldots 100 \mathrm{mV}$ (1)	
	50	potentiometer 0... 160 Ohm	
	51	potentiometer 0... 450 Ohm	
	52	potentiometer 0...1600 Ohm	
	53	potentiometer 0...4500 Ohm	
Ear		Measured value correction / scaling	0
	0	Without scaling	
	1	Offset correction (at [$\mathrm{SLL}_{\text {L l level) }}$	
	2	2-point correction (at [:AL level)	
	3		
	4	Automatic calibration (DAC)	
1 n .5	-1999... 9999	Alternative value for error at INP3	DFF
FRI 3		Forcing INP3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

$1 \quad 1 \overline{1}$

Name	Value range	Description	Default
FnE. 1		Function of limit 1	1
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring + alarm status storage. A stored limit value can be reset via error list, (F-key, 國-key or a 	
5 に®.		Source of imit 1	1
	0	process value	
	1	control deviation xw (process value - set-point)	
	2	control deviation xw (with suppression after start-up and set-point change)	
	3	measured value INP1	

(1) with current and voltage input signals, scaling is required (see chapter 5.3)

Configuration level

Name	Value range	Description	Default
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y（controller output）	
	8	control variable deviation xw（actual value－internal setpoint）$=$ deviation alarm to internal setpoint	
	9	difference x1－x2	
FnE．E		Function of limit 2	0
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring＋alarm status storage．A stored limit value can be reset via error list，（F）－key，⿴囗ㄹㄹ－key or a 	
515.2		Source of limit 2	0
	0	process value	
	1	control deviation xw（process value－set－point）	
	2	control deviation xw（with suppression after start－up and set－point change）	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y（controller output）	
	8	control variable deviation xw（actual value－internal setpoint ）$=$ deviation alarm to internal setpoint	
	9	difference x 1 － x 2	
Fのに．3		Function of limit 3	0
	0	switched off	
	1	measured value monitoring	
	2	Measured value monitoring＋alarm status storage．A stored limit value can be reset via error list，（F）－key，$⿴ 囗+{ }^{-}$－key or a 	

Name	Value range	Description	Default
$5 ヶ 6 . う$		Source of limit 3	0
	0	process value	
	1	control deviation xw（process value－set－point）	
	2	control deviation xw（with suppression after start－up and set－point change）	
	3	measured value INP1	
	4	measured value INP2	
	5	measured value INP3	
	6	effective setpoint Weff	
	7	correcting variable y（controller output）	
	8	control variable deviation xw（actual value－internal setpoint）$=$ deviation alarm to internal setpoint	
	9	difference $\mathrm{x} 1-\mathrm{x} 2$	
HE．HL		Alarm heat current function（INP2）	0
	0	switched off	
	1	Overload short circuit monitoring	
	2	Break and short circuit monitoring	
LPML		Monitoring of control loop interruption for heating	0
	0	switched off／inactive	
	1	active． If $\mathrm{L}, \mathrm{i}=0$ LOOP alarm is inactive！	
ロ月E．月		DAC alarm function	0
	0	DAC alarm switched off／inactive	
	1	DAC alarm active	
Hロы	OFF．．． 10000	Operating hours（only visible with BlueControl！）	OFF
5012	OFF．．． 10000	Output switching cycles（only visible with BlueControl！）	OFF

Rut． 1

Name	Value range	Description	Default
71．75：		Method of operation of output OUT1	0
	0	direct／normally open	
	1	inverse／normally closed	
4.1		Controller output Y1	1
	0	not active	
	1	active	
4.2		Controller output Y2	0
	0	not active	
	1	active	

Configuration level

Name	Value range	Description	Default
L 10̇. 1		Limit 1 signal	0
	0	not active	
	1	active	
1 1n.e.		Limit 2 signal	0
	0	not active	
	1	active	
		Limit 3 signal	0
	0	not active	
	1	active	
DPE.9		Valve monitoring (DAC)	0
	0	not active	
	1	active	
LP.9L		Interruption alarm signal (LOOP)	0
	0	not active	
	1	active	
HE.SL		Heat current alarm signal	0
	0	not active	
	1	active	
HL.5L		Solid state relay (SSR) short circuit signal	0
	0	not active	
	1	active	
F\% 1.1		INP1 error signal	0
	0	not active	
	1	active	
F81.2		INP2 error signal	0
	0	not active	
	1	active	
F月1.3		INP3 error signal	0
	0	not active	
	1	aktiv	
FMut		Forcing OUT1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

But.E

Configuration parameters Out. 2 as Out. 1 except for: Default y. $\mathbf{i}=0 \quad$ घ. $=1$

Dut. 3

Name	Value range	Description	Default
M1. 51		Signal type selection OUT3	0
	0	relay / logic (only visible with current/logic voltage)	
	1	0 ... 20 mA continuous (only visible with current/logic/voltage)	
	2	4 ... 20 mA continuous (only visible with current/logic/voltage)	
	3	$0 \ldots 10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	4	$2 \ldots . .10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	
M.月5:		Method of operation of output OUT3 (only visible when O.TYP=0)	1
	0	direct / normally open	
	1	inverse / normally closed	
31		Controller output Y1 (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
4.2		Controller output Y2 (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
1 LIN .1		Limit 1 signal (only visible when 0.TYP=0)	1
	0	not active	
	1	active	
L 10.L		Limit 2 signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
L 10.3		Limit 3 signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
dRE.f		Valve monitoring (DAC) (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
LPSLL		Interruption alarm signal (LOOP) (only visible when $0 . \mathrm{TYP}=0$)	0
	0	not active	
	1	active	
HE.SL		Heating current alarm signal (only visible when O.TYP=0)	0
	0	not active	
	1	active	

Configuration level

Name	Value range	Description	Default
HE.5L		Solid state relay (SSR) short circuit signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
FR.i		INP1 error (only visible when 0.TYP=0)	1
	0	not active	
	1	active	
FR 1.2		INP2 error (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
FR.3		INP3 error (only visible when 0.TYP=0)	0
	0	not active	
	1	aktiv	
But.	-1999... 9999	Scaling of the analog output for $0 \%(0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$, only visible when 0. TYP $=1 . .5$)	0
Dut. 1	-1999... 9999	Scaling of the analog output for $\mathbf{1 0 0 \%}(\mathbf{2 0 m A}$ or $\mathbf{1 0 V}$, only visible when $0 . T Y P=1 . .5$)	100
7.5rc		Signal source of the analog output OUT3 (only visible when 0.TYP=1..5)	1
	0	not used	
	1	controller output yl (continuous)	
	2	controller output y2 (continuous)	
	3	process value	
	4	effective set-point Weff	
	5	control deviation xw (process value - set-point)	
	6	measured value position feedback Yp	
FOut		Forcing OUT3 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	

Rut.4

Name	Value range	Description	Default
		Signal type selection OUT4	0
	0	relay / logic (only visible with current/logic voltage)	
	1	$0 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	
	2	$4 \ldots 20 \mathrm{~mA}$ continuous (only visible with current/logic/voltage)	
	3	$0 \ldots 10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	4	$2 \ldots 10 \mathrm{~V}$ continuous (only visible with current/logic/voltage)	
	5	transmitter supply (only visible without OPTION)	

Name	Value range	Description	Default
F.FEL		Method of operation of output OUT4 (only visible when $0 . T Y P=0$)	0
	0	direct / normally open	
	1	inverse / normally closed	
3.1		Controller output Y1 (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
4.5		Controller output Y 2 (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
1 1ñ.		Limit 1 signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
1 10icle		Limit 2 signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
L 10.3		Limit 3 signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
- 4 E.月		Valve monitoring (DAC) (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
LPML		Interruption alarm signal (LOOP) (only visible when $0 . T Y P=0$)	0
	0	not active	
	1	active	
HL.7L		Heat current alarm signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
HE.5L		Solid state relay (SSR) short circuit signal (only visible when 0.TYP=0)	0
	0	not active	
	1	active	
FR .1		INP1 error (only visible when O.TYP=0)	0
	0	not active	
	1	active	
FR 1.2		INP2 error (only visible when 0.TYP=0)	0
	0	not active	
	1	active	

Configuration level

Name	Value range	Description	Default
F月1．3		INP3 error（only visible when 0．TYP＝0）	0
	0	not active	
	1	aktiv	
［ut．II	－1999．．． 9999	Scaling of the analog output for $0 \%(0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$ ，only visible when $0 . T Y P=1 . .5$ ）	0
Iut． 1	－1999．．． 9999	Scaling of the analog output for 100%（ 20 mA or 10 V ，only visible when $0 . T Y P=1 . .5$ ）	100
ワ．5ロ		Signal source of the analog output OUT4（only visible when 0. TYP＝1．．5）	0
	0	not used	
	1	controller output yl（continuous）	
	2	controller output y2（continuous）	
	3	process value	
	4	effective set－point Weff	
	5	control deviation Xw（process value－set－point）	
	6	measured value position feedback Yp	
Frat		Forcing OUT1（only visible with BlueContro！！）	0
	0	No forcing	
	1	Forcing via serial interface	

04.5

Dut． 5

Configuration parameters Out． 2 as Out． 1 except for：Default Y． $\mathbf{1}=0 \quad$ Y． $\mathbf{Z}^{2}=0$

Method of operation and usage of output［ut． 1 to But．E：
Is more than one signal chosen active as source，those signals are OR－linked．

LDE

Name	Value range	Description	Default
L. 5		Local / Remote switching (Remote: adjusting of all values by front keys is blocked)	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	(F) - key switches	
58.2		Switching to second setpoint 5P.2	0
	0	no function (switch-over via interface is possible)	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
$5 P . E$		Switching to external setpoint $5 P . E$	0
	0	no function (switch-over via interface is possible)	
	1	always active	
	2	DI1 switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
42		Y/Y2 switching	0
	0	no function (switch-over via interface is possible)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[F] - key switches	
	6	- - key switches	
HE		Switching to fixed control output U.E	0
	0	no function (switch-over via interface is possible)	
	1	always activated (manual station)	
	2	DIl switches	
	3	DI2 switches (only visible with OPTION)	
	4	DI3 switches (only visible with OPTION)	
	5	[(]) - key switches	
	6	- key switches	

Configuration level

Name	Value range	Description	Default
大日为		Automatic／manual switching	0
	0	no function（switch－over via interface is possible）	
	1	always activated（manual station）	
	2	DI1 switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	（F）－key switches	
	6	（0）－key switches	
E．0FF		Switching off the controller	0
	0	no function（switch－over via interface is possible）	
	2	DI1 switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	（F）－key switches	
	6	－－key switches	
הロL		Blockage of hand function	0
	0	no function（switch－over via interface is possible）	
	2	DI1 switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	（F）－key switches	
Err．r		Reset of all error list entries	0
	0	no function（switch－over via interface is possible）	
	2	DII switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	［F－key switches	
	6	（2）－key switches	
		Switching of parameter set（ $\mathbf{P b}$ ，ti，td）	0
	0	no function（switch－over via interface is possible）	
	2	DI1 switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	［F］－key switches	
1．Lha		Switching of the actual process value between Inp1 and X2	0
	0	no function（switch－over via interface is possible）	
	2	DI1 switches	
	3	DI2 switches（only visible with OPTION）	
	4	DI3 switches（only visible with OPTION）	
	5	［F］－key switches	

Name	Value range	Description	Default
d.Fn		Function of digital inputs (valid for all inputs)	0
	0	direct	
	1	inverse	
	2	toggle key function	
Fdi 1		Forcing di1 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	
Fd?		Forcing di2 (only visible with BlueControl!)	0
	0	No forcing	
	1	Forcing via serial interface	
Fd3 3		Forcing di3 (only visible with BlueContro!!)	0
	,	No forcing	
	1	Forcing via serial interface	

athr

Name	Value range	Description	Default
brud		Baudrate of the interface (only visible with OPTION)	2
	0	2400 Baud	
	1	4800 Baud	
	2	9600 Baud	
	3	19200 Baud	
Rodr	1... 247	Address on the interace (only visible with OPTION)	1
Prey		Data parity on the interface (only visible with OPTION)	1
	0	no parity (2 stop bits)	
	1	even parity	
	2	odd parity	
dELy	0...200	Delay of response signal [ms] (only visible with OPTION)	0
Un it		Unit	1
	0	without unit	
	1	${ }^{\circ} \mathrm{C}$	
	2	${ }^{\circ} \mathrm{F}$	
d^{P}		Decimal point (max. number of digits behind the decimal point)	0
	0	no digit behind the decimal point	
	1	1 digit behind the decimal point	
	2	2 digits behind the decimal point	
	3	3 digits behind the decimal point	

Configuration level

Name	Value range	Description	Default
LEd		Function allocation of status LEDs $1 / 2 / 3 / 4$	0
	0	OUT1，OUT2，OUT3，OUT4	
	1	Heating，alarm 1，alarm 2，alarm 3	
	2	Heating，cooling，alarm 1，alarm 2	
	3	Cooling，heating，alarm 1，alarm 2	
d） 59	0．．． 10	Brightness of display	0
C．dEL	$0 . .200$	Modem delay［ms］	0
FrEq		Switching $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$（only visible with BlueControl！）	0
	0	50 Hz	
	1	60 Hz	
15aF		Block controller off（only visible with BlueContro！！）	0
	0	Released	
	1	Blocked	
1月口品		Block auto tuning（only visible with BlueControl！）	0
	0	Released	
	1	Blocked	
150		Block extended operating level（only visible with BlueControl！）	0
	0	Released	
	1	Blocked	
P955	OFF．．． 9999	Password（only visible with BlueControl！）	OFF
1P8\％		Block parameter level（only visible with BlueControl！）	0
	0	Released	
	1	Blocked	
15nt		Block configuration level（only visible with BlueControl！）	0
	0	Released	
	1	Block	
15月L		Block calibration level（only visible with BlueControl！）	0
	0	Released	
	1	Blocked	
［0．5］		Display 3 controller operating level（only visible with BlueControl！）	2
	0	No value／only text	
	1	Display of value	
	2	Output value as bargraph	
	3	Control deviation as bargraph	
	4	Process value as bargraph	

（i）Resetting the controller configuration to factory setting（Default）
\rightarrow chapter 11.1 （page 69）

BlueControl - the engineering tool for the controller MIR-491

3 engineering tools with different functionality facilitating MIR-491 configuration and parameter setting are available (see chapter 9: Accessory equipment with ordering information).
In addition to configuration and parameter setting, the engineering tools are used for data acquisition and offer long-term storage and print functions. The engineering tools are connected to MIR-491 via the front-panel interface "BluePort" by means of PC (Windows 95 / 98 / NT) and a PC adaptor. Description BlueControl: see chapter 8: BlueControl (page 61).

4.3 Set-point processing

The set-point processing structure is shown in the following picture:

4.4 MIR-491 cooling functions

With MIR-491, configuration parameter [yEL (EanF/Entr/EyLL) can be used for matching the cycle time of 2-point and 3-point controllers. This can be done using the following 4 methods.

The adjusted cycle times \boldsymbol{t} and $\mathfrak{E} \mathbb{Z}$ are valid for 50% or -50% correcting variable. With very small or very high values, the effective cycle time is extended to prevent unreasonably short on and off pulses. The shortest pulses result from $1 / 4 \times:$ or $1 / 4 \times E$. The characteristic curve is also called "bath tub curve"

Parameters to be adjusted: $\quad \mathrm{E}:$: min. cycle time 1 (heating) [s] (PRrA/Entr) EZ: min. cycle time 2 (cooling) [s]

4.4.2 Water cooling linear ($\mathrm{CyCL}=1$)

For heating ($\ddagger 9$), the standard method (see chapter 4.4.1) is used. For cooling (HL_{2}) , a special algorithm for cooling with water is used. Generally, cooling is enabled only at an adjustable process temperature

(E.HET), because low temperatures prevent evaporation with related cooling, whereby damage to the plant is avoided. The cooling pulse length is adjustable using parameter t.an and is fixed for all output values.

The "off" time is varied dependent of output value. Parameter E.aFF is used for determining the min "off" time. For output of a shorter off pulse, this pulse is suppressed, i.e. the max. effective cooling output value is calculated according to formula E.an $/($ t.an + E.aFF $) \cdot 100 \%$.

Parameters to be adjusted: (PRH/Entr) Ean: pulse duration water cooling E.OFF: minimum pause water cooling

4.4.3 Water cooling non-linear ($54[L=?$)

With this method, the cooling power is normally much higher than the heating power, i.e. the effect on the behaviour during transition from heating to cooling may be negative. The cooling curve ensures that the control intervention with 0 to -70% correcting variable is very weak. Moreover, the correcting variable increases very quickly to max. possible cooling. Parameter FHE can be used for changing the characteristic curve. The standard method (see section 4.4.1) is also used for heating. Cooling is also enabled dependent of process temperature .

Parameters to be adjusted: (PR日G/EnEr)
F.HET: adaptation of (non-linear) characteristic Water cooling
t.an: Pulse duration water cooling
E.OFF: min. pause water cooling

EHED: min. temperature for water cooling

Configuration level

4.4.4 Heating and cooling with constant period ($[4[L=3$)

1 and $t 己$ are met in the overall output range. To prevent unreasonably short pulses, parameter LP is used for adjusting the shortest pulse duration. With small correcting values which require a pulse shorter than the value adjusted in $E P$, this pulse is suppressed. However, the controller stores the pulse and totalizes further pulses, until a pulse of duration t^{P} can be output.

Parameters to be adjusted: (PRAR/EnEr)
t : : Min. cycle time 1 (heating) [s]
Le] : min. cycle time 2 (cooling) [s]
$E P: \quad$ min. pulse length $[s]$

4.5 Configuration examples

4.5.1 Signaller (inverse)


```
EanF/Entr: 5PFn = a
    EFnE =
    CREL \(=0\)
    [anF/But. : BRat = 日
        y. \(1=1\)
PRHR/EnEr: 5H = 0... 9999
PR-R / SELP: 5PLL \(=-1999 \ldots 9999\)
    5P.H1 = -1999... 9999
```

set-point controller signaller with one output inverse action
(e.g. heating applications)
action 1 ut. I direct
control output Y1 active
switching difference (symmetrical to the trigger point)
set-point limit low for Weff
set-point limit high for Weff
(i)

For direct signaller action, the controller action must be changed (LanF / Entr / ERat = 1)

4.5.2 2-point controller (inverse)

[anF/Entr: 5PFn = 0
CFnc =
CAEt $=\square$
EanF/Buts: BRat = B
4. $1=1$

PRー日/Entr: Pb: = 0,1...9999
t.! = 1... 9999
tdi = 1... 9999
: $=0,4 \ldots 9999$
PRIR / SELP: 5PLR $=-1999 . . .9999$
5Р.H, = -1999... 9999
set-point controller 2-point controller (PID) inverse action
(e.g. heating applications) action mut. 1 direct control output Y1 active proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$) integral time 1 (heating) in sec.
derivative time 1 (heating) in sec.
min. cycle time 1 (heating)
set-point limit low for Weff
set-point limit high for Weff
(i) For direct action, the controller action must be changed
(EanF / Entr / Chat = 1).

4．5．3 3－point controller（relay \＆relay）

［anF／Entr：5PFn＝
EFAE $=3$
CREL $=0$
［anF／But．1：BREt＝B
$3.1=1$
$4.2=0$
［anF／Buta：BREt＝B
$3.1=\square$
$42=1$
PRrP／Entr：Pb：＝0，1．．．9999
PロZ $=0,1 \ldots 9999$
t．i＝1．．． 9999
をばこ＝1．．． 9999
tdi＝1．．． 9999
tde $=1 \ldots 999$
t：＝0，4．．． 9999
にを＝0，4．．．9999
$5 \mathrm{H}=0 \ldots 999$
PRIR／SELP：5PLZ $=-1999 \ldots 9999$
5PH1＝－1999．．． 9999
set－point controller
3 －point controller（2xPID） action inverse
（e．g．heating applications） action aut． 1 direct control output Y1 active control output Y2 not active action 0 ut．$]^{3}$ direct control output Y1 not active control output Y 2 active proportional band 1 （heating） in units of phys．quantity（e．g．${ }^{\circ} \mathrm{C}$ ） proportional band 2 （cooling） in units of phys．quantity（e．g．${ }^{\circ} \mathrm{C}$ ） integral time 1 （heating）in sec． derivative time 2 （cooling）in sec． integral time 1 （heating）in sec．
derivative time 2 （cooling）in sec．
min．cycle time 1 （heating）
min．cycle time 2 （cooling）
neutr．zone in units of phys．quantity
set－point limit low for Weff
set－point limit high for Weff
（i）
For direct action of the 3－point controller，the controller action must be changed （ LanF／Entr／RAct＝1）

4.5.4 3-point stepping controller (relay \& relay)

EanF/Entr: $\begin{aligned} \text { SPFn } & =\square \\ \text { EFnE } & =4 \\ \text { EAEt } & =\square\end{aligned}$
[anF/But.1: BREL = 0
4. $=1$
$4.3=0$
[anf/Butz: BRct = 0
$41=\square$
$4.2=1$
PRAR/[ntr: Pb: = 0,1...9999
\mathbf{t}_{1} = 1... 9999
tdi = 1... 9999
: $=0,4 \ldots 9999$
5H = 0... 9999
EP = 0, 1... 9999
t $\quad=3 . . .9999$
PRータ / 5ELP: 5PLL = -1999...9999 set-point limit low for Weff
5P.H1 = -1999... 9999 set-point limit high for Weff
(i) For direct action of the 3-point stepping controller, the controller output action must be changed (LanF/Entr/RAct=1).

4.5.5 Continuous controller (inverse)

(i)

For direct action of the continuous controller, the controller action must be changed (LanF / Entr / RRLE = 1) .

4.5.6 Δ - Y - Off controller

Canf/Entr	5PFn Efnc CREt	$\begin{aligned} & =0 \\ & =a \\ & =0 \end{aligned}$	set-point controller Δ-Y-Off controller inverse action (e.g. heating applications)
Eanf/ iut. ${ }^{\text {a }}$	日Rat	$=0$	action Dut. 1 direct
	4.1	1	control output Y1 active
	4.3	$=0$	control output Y2 not active
CanF/ Tutez:	BRat	$=0$	action 5 ate ${ }^{3}$ direct
	3.1	$=0$	control output Y1 not active
	4.3	,	control output Y2 active
Prar / Entr:	Pb:	= 0,1... 9999	proportional band 1 (heating) in units of phys. quantity (e.g. ${ }^{\circ} \mathrm{C}$)
	E.1	= 1...9999	integral time 1 (heating) in sec.
	Ed	= 1...9999	derivative time 1 (heating) in sec.
	E	= 0,4...9999	min. cycle time 1 (heating)
	54	= 0...9999	switching difference
	d. 59	= -1999...9999	trigg. point separation suppl. cont.
			$\Delta / \mathrm{Y} / \mathrm{Off}$ in units of phys. quantity
PRAR / SEEP:	5PLG	= -1999...9999	set-point limit low for Weff
	5 FH ,	= -1999...9999	set-point limit high for Weff

4.5.7 MIR-491 with measured value output

[anF/But.3/4: BtyP =

$$
\begin{aligned}
& =3 \\
& =3 \\
& =4
\end{aligned}
$$

$$
\text { But. }=-1999 \ldots 9999
$$

$$
\text { But. } 1=-1999 . . .9999
$$

$$
\text { B.5re }=3
$$

[ut. $3 / 40 \ldots 20 \mathrm{~mA}$ continuous
But.3/4 4...20mA continuous
But.3/4 $0 \ldots 10 \mathrm{~V}$ continuous
But.3/42...10V continuous
scaling [ut.3/4
for $0 / 4 \mathrm{~mA}$ or $0 / 2 \mathrm{~V}$
scaling $8 \mathrm{at} .3 / 4$
for 20 mA or 10 V
signal source for $\left[\begin{array}{ll}\text { E. } 3 / 4\end{array}\right.$ is the process value

5 Parameter setting level

5.1 Parameter survey

	Adjustment:
	- The parameters can be adjusted by means of keys - Transition to the next parameter is by pressing key - After the last parameter of a group, danE is displayed, followed by automatic change to the next group.
(4)	Return to the beginning of a group is by pressing the key for $\mathbf{3} \mathbf{s e c}$.
(i)	If for 30 sec. no keypress is excecuted the controler returns to the process value and setpoint display (Time Out $=\mathbf{3 0} \mathbf{s e c}$.)

5．2 Parameters

FnEr

Name	Value range	Description	Default
PbI	1．．． 9999	Proportional band 1 （heating）in phys．dimensions（e．g．${ }^{\circ} \mathrm{C}$ ）	100
Pbİ	1．．． 9999	Proportional band 2 （cooling）in phys．dimensions（e．g．${ }^{\circ} \mathrm{C}$ ）	100
E．1	1．．． 9999	Integral action time 1 （heating）［s］	180
上12	1．．． 9999	Integral action time 2 （cooling）［s］	180
tal	1．．． 9999	Derivative action time 1 （heating）［ s$]$	180
上 $\mathrm{E}^{\text {E }}$	1．．． 9999	Derivative action time 2 （cooling）［ s ］	180
L1	0，4．．． 9999	Minimal cycle time 1 （heating）［ s ．The minimum impulse is $1 / 4 \times \mathrm{tl}$	10
EV	0，4．．． 9999	Minimal cycle time 2 （heating）［s］．The minimum impulse is 1／4x t2	10
$5 H$	0．．． 9999	Neutral zone or switching differential for on－off control ［phys．dimensions）	2
1.57	－1999．．． 9999	Trigger point seperation for additional contact $\Delta / \mathrm{Y} / \mathrm{Off}$ ［phys．dimensions］	100
Lr	0，1．．． 9999	Minimum impulse［s］	AFF
$t!$	3．．． 9999	Motor travel time［s］	60
4.1 .0	－120．．．120	Lower output limit［\％］	0
4.14	－120．．．120	Upper output limit［\％］	100
42	$-120 . . .120$	2．correcting variable	0
4.5	－120．．． 120	Working point for the correcting variable［\％］	0
45.4	－120．．．120	Limitation of the mean value Ym［\％］	5
1.30	0．．． 9999	Max．deviation xw at the start of mean value calculation ［phys．dimensions］	8
E．H2I	－1999．．． 9999	Min．temperature for water cooling．Below the set temperature no water cooling happens	0
L．0n	0，1．．． 9999	Impulse lenght for water cooling．Fixed for all values of controller output．The pause time is varied．	1
E．aFF	1．．． 9999	Min．pause time for water cooling．The max．effective controller output results from E．an $/($ E．an + L．aF F $) \cdot 100 \%$	10
F．HEI	0，1．．． 9999	Modification of the（non－linear）water cooling characteristic （see page 41）	1
QFF5	－120．．． 120	Zero offset	0

PRT．E

Name	Value range	Description	Default
Pb12	1．．． 9999 （1）	Proportional band 1 （heating）in phys．dimensions（e．g．${ }^{\circ} \mathrm{C}$ ）， 2．parameter set	100
Phご	1．．． 9999 （1）	Proportional band 2 （cooling）in phys．dimensions（e．g．${ }^{\circ} \mathrm{C}$ ）， 2．parameter set	100

Parameter setting level

Name	Value range	Description	Default
L E2	0．．． 9999	Integral action time 2 （cooling）［s］，2．parameter set	10
上，12	0．．． 9999	Integral action time 1 （heating）［s］，2．parameter set	10
上d12	0．．． 9999	Derivative action time 1 （heating）［ s$], 2$ ．parameter set	10
上dEE	0．．． 9999	Derivative action time 2 （cooling）［s］，2．parameter set	10

SELP

Name	Value range	Description	Default
5 PCLI	－1999．．． 9999	Set－point limit low for Weff	0
5 P 析，	－1999．．． 9999	Set－point limit high for Weff	900
$5 P .1$	－1999．．． 9999	Set－point 2.	0
r． 59	0．．． 9999	Set－point gradient［／min］	RFF
$5{ }^{\circ}$	－1999．．． 9999	Set－point（only visible with BlueControl！）	0

inP． 1

Name	Value range	Description	Default
｜nL． 1	－1999．．． 9999	Input value for the lower scaling point	0
［1uc． 1	－1999．．． 9999	Displayed value for the lower scaling point	0
I nHil	－1999．．． 9999	Input value for the upper scaling point	20
Fatil	－1999．．． 9999	Displayed value for the lower scaling point	20
E．F I	－1999．．． 9999	Filter time constant［s］	0，5

inP．E

Name	Value range	Description	Default
$1 \mathrm{nL.z}$	－1999．．． 9999	Input value for the lower scaling point	0
$\square \mathrm{LLEL}$	－1999．．． 9999	Displayed value for the lower scaling point	0
1 nHe	－1999．．． 9999	Input value for the upper scaling point	50
	－1999．．． 9999	Displayed value for the upper scaling point	50

inP． 3

Name	Value range	Description	Default
1 nL．${ }^{\text {a }}$	－1999．．． 9999	Input value for the lower scaling point	0
－1ヶL．う	－1999．．． 9999	Displayed value for the lower scaling point	0
1 nH．］	－1999．．． 9999	Input value for the upper scaling point	20
［ı 4.3	－1999．．． 9999	Displayed value for the upper scaling point	20
E．E J	－1999．．． 9999	Filter time constant［s］	0

 0,001 is possible．

1.17

Name	Value range	Description	Default
L. 1	-1999... 9999	Lower limit 1	10
H. 1	-1999... 9999	Upper limit 1	10
Hy5.	0... 9999	Hysteresis limit 1	1
$1 .{ }^{\text {L }}$	-1999... 9999	Lower limit 2	RFF
$\mathrm{H.L}^{2}$	-1999... 9999	Upper limit 2	RFF
Hy5.	0... 9999	Hysteresis limit 2	1
L. 3	-1999... 9999	Lower limit 3	RFF
H.J	-1999... 9999	Upper limit 3	-32000
Hy5.3	0... 9999	Hysteresis limit 3	1
HE.H	-1999... 9999	Heat current limit [A]	50

(i) Resetting the controller configuration to factory setting (Default) \rightarrow chapter 11.1 (page 69)

5.3 Input scaling

 or/and $\cap P$ scaling of input and display values at parameter setting level is required. Specification of the input value for lower and higher scaling point is in the relevant electrical unit (mA / V).

5.3.1 Input $: n P . \mid$ and $I n P .3$

(i)

5.549	Input signal	1 nL.x	Hut.x	1 nH.x	\#utix
$\begin{gathered} 30 \\ (0 \ldots . .20 \mathrm{~mA}) \end{gathered}$	$0 \ldots 20 \mathrm{~mA}$	0	any	20	any
	$4 \ldots 20 \mathrm{~mA}$	4	any	20	any
$\begin{gathered} 40 \\ (0 \ldots 10 \mathrm{~V}) \end{gathered}$	$0 \ldots 10 \mathrm{~V}$	0	any	10	any
	$2 \ldots 10 \mathrm{~V}$	2	any	10	any

In addition to these settings, i in.x and \boldsymbol{i} intix can be adjusted in the range ($0 \ldots 20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$) determined by selection of 5.15 F .

For using the predetermined scaling with thermocouple and resistance thermometer (Pt100), the settings for inix. and mix. and for initx and In uitix must have the same value.
(i)

Input scaling changes at calibration level $(\rightarrow$ page 55) are displayed by input scaling at parameter setting level. After calibration reset (1 FF), the scaling parameters are reset to default.

$5.24 P$	Input signal	1 ni.z	Hut.z	$1 \mathrm{nH}^{2}$	[14H23
30	$0 \ldots 20 \mathrm{~mA}$	0	any	20	any
31	$0 \ldots 50 \mathrm{~mA}$	0	any	50	any

 ($0 \ldots . .20 / 50 \mathrm{~mA}$) determined by selection of 5 L 5 F .

5.4 Second set of parameters

MIR-491 is provided with a second set of parameters (heating and cooling.
Switch-over to the second set of parameters is dependent of configuration
 instrument front panel or the interface (OPTION).
Self-tuning is always done using the active parameter set, i.e. for optimizing, the second set of parameters must be active.

6 Calibration level

Measured value correction ([RL) is only visible if LanF/InP: / Earr = or 2 is chosen.

The measured value can be matched in the calibration menu ($[8:$). Two methods are available:

Offset correction

(EanF/InPl/Earr=i):

- possible on-line at the process

2-point correction

(LanF/InPl/[arr=e):

- is possible off-line with process value simulator

I nl. I: The input value of the scaling point is displayed.
The operator must wait, until the process is at rest.
Subsequently, the operator acknowledges the input value by pressing key \square.
Bul. 1: The display value of the scaling point is displayed.
Before calibration, But. 1 is equal to $1 \mathrm{nL.t}$.
The operator can correct the display value by pressing keys $\Delta \square$.
Subsequently, he confirms the display value by pressing key \square.

2-point correction (LanF/InP.//[arr=a):

Inl. 1: The input value of the lower scaling point is displayed.
The operator must adjust the lower input value by means of a process value simulator and confirm the input value by pressing key \square.
Inul. 1: The display value of the lower scaling point is displayed.
Before calibration, But. 1 equals int. i.
The operator can correct the lower display value by pressing the $\Delta \square$ keys. Subsequently, he confirms the display value by pressing key \square.
I nH. t : The input value of the upper scaling point is displayed.
The operator must adjust the upper input value by means of the process value simulator and confirm the input value by pressing key \square.
Iu H. f : The display value of the upper scaling point is displayed.
Before calibration Butit 1 equals I nith 1 .
The operator can correct the upper display value by pressing keys $\Delta \square$ Subsequently, he confirms the display value by pressing key \boxminus.
(i)
 the parameters below the lowest adjustment value (IFF) by means of decrement key ∇.

7 Special functions

7.1 $D A C^{\circledR}$ - motor actuator monitoring

(Digital Actor Control DAC ${ }^{\circledR}$)

With all controllers with position feedback Yp , the motor actuator can be monitored for functional troubles. The DAC^{\circledR} function can be started by chosing the parameter $[\mathcal{F} \mathrm{Ac}=5$ or 5 at the configuration level ($[\mathrm{anF}$):

- [anF/Entr/EFnc=5 3-point-stepping controller with position feedback Yp as potentiometer
- EanF/Entr/Efne=5 Continuous controller with integrated positioner and position feedback Yp as potentiometer

If an error occures, the controller switches to manual operation (- LED blinks) and no impulses are given out any longer. If one of the relays shall switch when a DAC^{\circledR} error occures, parameter $\mathrm{dREA}=1$ and inverse action $\mathrm{ARE}=1$ must
 (512.3 and 4 only possible if $1.24 P=5$ [relay/logic]):

- [anf/Dut.x / dRc.R=1 Motor actuator monitoring (DAC) aktive

The system detects the following stepping controller errors:

- defective motor
- defective capacitor (wrong rotating direction)
- wrong phase followers (wrong rotating direction)
- defective force transmission at spindle or drive
- excessive backlash due to wear
- jamming of the control valve e.g. due to foreign body

In these cases the controller will change to manual operation and the outputs will be switched off. Is the controller switched to automatic operation again or any modification is done the controller activates the DAC function again and the outputs will be setted.

Functioning of the DAC function

 Therewith no wrong detection of blocking or wrong method of operation can be recognized.
The automatic calibration can be used with drives outfitted with spring assembly.

Execution of the calibration:

It is controlled if the mean alteration between two messurements is enough for the DAC monitoring. The calibration will be stopped if the alteration between two messurements is too small.
The position of 0% is searched. Therefor the drive will be closed until there is no changing of the input signal for $0,5 \mathrm{sec}$.
Assuming that the drive is outfitted with spring assembly, the drive is opened for $2,8 \mathrm{sec}$. The drive should then still be within the spring assembly. This position is allocated and stored as 0%.
With the same procedure the position for 100% is allocated and stored.
Simultaneously the motor running time is determined and saved as parameter $\mathbf{L E}$. Afterwards the controller sets the drive in the position before calibration.
Was the controller in automatic mode before calibration it will be set to automatic mode again otherwise it remains in manual mode.

The following errors can be occure during calibration:

- the change of the Yp input is to small, no monitoring is possible
- the motion is in wrong direction
- the Yp input is broken

In these cases the automatic calibration will be stopped and the controller remains in manual mode.

If the automatic calibration leads to no resonable results the calibration of the Yp input can be done manual.

If the conroller reaches the positions of 0% or 100% the outputs will be switched off. Also in manual mode it is not possible to exceed these limits.

Because no controller with continuouse output and $Y p$ input is defined there won't be the DAC function for this controlling type.

7．2 MIR－491 as Modbus master

This function is only selectable with BlueControl（engineering tool）！

Additions athr（only visible with BlueControl！）

Name	Value range	Description	Default
二R5L		Controller is used as Modbus master	0
	0	Slave	
	1	Master	
「ップロ	0．．． 100	Number of data that should be transmitted by the Modbus master．	0
「ジL	0．．． 200	Cycle time［ms］for the Modbus master to transmit its data to the bus．	60
Adru	1．．． 65535	Modbus address of the data that Modbus master gives to the bus．	1
Adra	1．．． 65535	Target address to which the with Raril specified data is given out on the bus．	1

The MIR－491 can be used as Modbus master（Lanf／othr／aist＝1）The Modbus master sends ist data to all slaves（Broadcast message，controller adress 0 ）．It transmits its data（modbus adress Rd－it ）cyclic with the cycle time［ym to the bus．The slave controller receives the data transmitted by the masters and allocates it to the modbus target adress Pdra．If more than one data should be transmitted by the master controller（ Fun n ＞ \mathbf{i} ），the modbus adress Rdrid indicates the start adress of the data that should be transmitted and Adra indicates the first target adress where the received data should be stored．The following data will be stored at the logically following modbus target adresses． With this it is possible e．g．to specify the process value of the master controller as set－point for the slave controllers．

8 BlueControl

BlueControl is the projection environment for the controller MIR-491. The following 3 versions with graded functionality are available:

Functionality	Mini	Basic	Expert
parameter and configuration setting	yes	yes	yes
controller and control loop simulation	yes	yes	yes
download: writes an engineering to the controller	yes	yes	yes
online mode/ visualisation	SIM only	yes	yes
creation of user defined linearizations	SIM only	yes	yes
configuration of extended operating level	SIM only	yes	yes
upload: reads an engineering from the controller	SIM only	yes	yes
basic diagnosis function	SIM only	yes	yes
file, save engineering data	no	yes	yes
printer function	no	yes	yes
online documentation, help system	no	yes	yes
measurement correction (calibration procedure)	no	yes	yes
program editor	SIM only	SIM only	yes
data acquisition and trend function	SIM only	SIM only	yes
network and multiuser licence	no	no	yes
personal assistant function	no	no	yes
extended simulation	no	no	yes
extended diagnostic and service functions	no	no	yes

The mini version is - free of charge - at your disposal as download at ACS homepage www.acs-controlsystem.de.

At the end of the installation the licence number has to be stated or DEMO mode must be chosen. At DEMO mode the licence number can be stated subsequentl y under
Help
Licence

Change.

9 Versions

Accessories delivered with the unit

Operating manual (if selected by the ordering code)

- 2 fixing clamps
- operating note in 15 languages

Accessory equipment with ordering information

Description	Order no.	
Heating current transformer 50A AC		STW-440-50001
PC-adaptor for the front-panel interface		STK-540-00001
Operating manual	German	BAL-401-62918
Operating manual	English	BAL-401-62911
BlueControl (engineering tool)	Mini	BCM-400-00002
BlueControl (engineering tool)	Basic	BCB-400-00002
BlueControl (engineering tool)	Expert	BCD-400-00003

10 Technical data

INPUTS
 SURVEY OF INPUTS

Input	Used for
INP1	x1 (process value)
INP2	Heating current, ext. set-point or ext. correction, position feedback Yp, 2nd process value x2, ext. correcting variable Y.E, input for additional limit signalling abd indication
INP3	as for INP2
di1	Operation disabled, controller off, disabled auto/manual key, reset
di2	of stored alarms, switch-over to ... second set-point SP.2, external set-point SP.E, fixed correcting variable Y2, fixed correcting variable Y.E, manual operation, manual operation, parameter set $1 \leftrightarrow 2$

PROCESS VALUE INPUT INP1

Resolution:	>14 bits
Decimal point:	0 to 3 digits behind the decimal point
Dig. input filter:	adjustable 0,000...9999 s
Scanning cycle:	100 ms
Measured value correction:	2-point or offset correction

Thermocouples

\rightarrow Table 1 (page 67)

Input resistance:
$\geq 1 \mathrm{M} \Omega$
Effect of source resistance: $\quad 1 \mu \mathrm{~V} / \Omega$
Cold-junction compensation
Maximal additional error: $\quad \pm 0,5 \mathrm{~K}$

Sensor break monitoring

Sensor current: $\leq 1 \mu \mathrm{~A}$
$\leq 1 \mu \mathrm{~A}$

Resistance thermometer
\rightarrow Table 2 (page 67)
Connection: 3-wire
Lead resistance: max. 30 0hm
Input circuit monitor: break and short circuit

Special measuring range

BlueControl (engineering tool) can be used to match the input to sensor KTY 11-6
(characteristic is stored in the controller).
Physical measuring range: $0 . . .45000 \mathrm{hm}$
Linearization segments
16

Current and voltage signals

\rightarrow Table 3 (page 67)
Span start, end of span: anywhere within measuring range
Scaling:
Linearization:

Decimal point: adjustable
Input circuit monitor: $\quad 12,5 \%$ below span start (2mA, 1V)

SUPPLEMENTARY INPUT INP2

Resolution: > 14 bits
Scanning cycle: 100 ms

Heating current measurement

via current transformer $(\rightarrow$ Accessory
equipment)
Measuring range: 0...50mA AC
Scaling:
adjustable -1999...0,000... 9999 A

Current measuring range

Technical data as for INP1

Potentiometer

\rightarrow Table 2 (page 67)

SUPPLEMENTARY INPUT INP3 (OPTION)

Resolution: > 14 bits
Scanning cycle: 100 ms
Technical data as for INP1 except 10V range.

CONTROL INPUTS DI1, DI2

Configurable as switch or push-button!
Connection of a potential-free contact suitable for switching "dry" circuits.

Switched voltage:
5 V
Current:
$100 \mu \mathrm{~A}$

CONTROL INPUTS DI2, DI3 (OPTION)

The digital input di2 located on the A-card and di2 located on the option card are or-linked.
Configurable as switch or push-button!
Optocoupler input for active triggering.
Nominal voltage 24 V DC external
Current sink (IEC 1131 type 1)
Logic "0"
$-3 . .5 \mathrm{~V}$
Logic "1"
Current requirement
15... 30 V
approx.. 5 mA

TRANSMITTER SUPPLY Ut (OPTION)

Power:

$22 \mathrm{~mA} / \geq 18 \mathrm{~V}$
If the universal output OUT3 or OUT4 is used there may be no external galvanic connection between measuring and output circuits!

GALVANIC ISOLATION

——Safety isolation
= Function isolation

Mains supply	Process value input INP1 Supplementary input INP2 Optional input INP3 Digital input dil, di2
Relay OUT1	RS422/485 interface
Relay OUT2	Digital inputs di2, 3
Relay OUT3	Universal output OUT3
Relay OUT4	Universal output OUT4
	Transmitter supply U
OUT5, OUT6	

OUTPUTS

SURVEY OF OUTPUTS

Output	Used for
OUT1,2 (relays)	Control output heating/cooling or Open/Close, limit contacts, alarms
OUT3,4 (relays or logic)	as OUT1 and OUT2
OUT3,4 (continuous)	Control output, process value, set-point, control deviation, position feedback Yp, transmitter supply 15V/22mA
OUT5 OUT6 (Opto-coupler)	as OUT1 and OUT2

* All logic signals can be OR-linked!

RELAY OUTPUTS OUT1...OUT4

Contact type:
Max.contact rating:

Min. contact rating:
Operating life (electr.):
potential-free changeover contact
$500 \mathrm{VA}, 250 \mathrm{~V}, 2 \mathrm{~A}$ at 48 ... 62 Hz, resistive load 5V, $10 \mathrm{~mA} A C / D C$ 600.000 duty cycles with max. contact rating

Note:

If the relays operate external contactors, these must be fitted with RC snubber circuits to manufacturer specifications to prevent excessive switch-off voltage peaks.

OUT3, 4 AS UNIVERSAL OUTPUT

Galvanically isolated from the inputs.
Freely scalable resolution: 11 bits

Current output

0/4... 20 mA configurable.

Signal range:	
Max. load:	
Load effect:	$\leq 500 \Omega$
Resolution:	
no effect	
Accuracy	
	$\leq 22 \mu \mathrm{~A}(0,1 \%)$
	$\leq 40 \mu \mathrm{~A}(0,2 \%)$

Voltage output

0/2...10V configurable
Signal range: $\quad 0 . . .11 \mathrm{~V}$
Min. load: $\quad \geq 2 \mathrm{k} \Omega$
Load effect: no effect
Resolution: $\quad \leq 11 \mathrm{mV}(0,1 \%)$
Accuracy $\quad \leq 20 \mathrm{mV}(0,2 \%)$
OUT3, 4 used as transmitter supply
Output power: $\quad 22 \mathrm{~mA} / \geq 13 \mathrm{~V}$

OUT3, 4 used as logic output

Load $\leq 500 \Omega$	$0 / \leq 20 \mathrm{~mA}$
Load $>500 \Omega$	$0 />13 \mathrm{~V}$

OUTPUTS OUT5/6 (OPTION)

Galvanically isolated opto-coupler outputs. Grounded load: common positive voltage. Output rating: 18... 32 VDC; $\leq 70 \mathrm{~mA}$ Internal voltage drop: $\leq 1 \mathrm{~V}$ with $I_{\max }$ Protective circuit: built-in against short circuit, overload, reversed polarity (free-wheel diode for relay loads).

POWER SUPPLY

Dependent of order:

AC SUPPLY

Voltage:	$90 \ldots 260 \mathrm{~V} \mathrm{AC}$
Frequency:	$48 . .62 \mathrm{~Hz}$
Power consumption	approx. 7,0 VA

UNIVERSAL SUPPLY 24 V UC

AC voltage:
Frequency:
DC voltage:
Power consumption:

20,4...26,4 V AC
48... 62 Hz
18... 31 V DC approx.. 7,0 VA

BEHAVIOUR WITH POWER FAILURE

Configuration, parameters and adjusted set-points, control mode:
Non-volatile storage in EEPROM

BLUEPORT FRONT INTERFACE

Connection of PC via PC adapter (see
"Accessory equipment"). The BlueControl software is used to configure, set parameters and operate the MIR-491.

BUS INTERFACE (OPTION)

Galvanically isolated
Physical:
Protocol:
RS 422/485

Transmission speed: 2400, 4800, 9600, 19.200 bits/sec
Address range:
1... 247

Number of controllers per bus: 32
Repeaters must be used to connect a higher number of controllers.

ENVIRONMENTAL CONDITIONS

Protection modes

Front panel:	IP 65 (NEMA 4X)
Housing:	IP 20
Terminals:	IP 00

Permissible temperatures

For specified
$0 . . .60^{\circ} \mathrm{C}$
accuracy:
Warm-up time:
≥ 15 minutes
For operation:
$-20 . . .65^{\circ} \mathrm{C}$
For storage:
$-40 . . .70^{\circ} \mathrm{C}$

Humidity

75% yearly average, no condensation

Shock and vibration

Vibration test Fc (DIN 68-2-6)
Frequency: 10... 150 Hz
Unit in operation: 1 g or $0,075 \mathrm{~mm}$
Unit not in operation: 2 g or $0,15 \mathrm{~mm}$
Shock test Ea (DIN IEC 68-2-27)
Shock: $\quad 15 \mathrm{~g}$
Duration: 11ms

Electromagnetic compatibility

Complies with EN 61 326-1
(for continuous, non-attended operation)

- Hot water plants with outflow temperatures above $110^{\circ} \mathrm{C}$ to DIN 4752
- Thermal transfer plants with organic transfer media to DIN 4754
- Oil-heated plants to DIN 4755

UL-approval (applied for)

Electrical connections

- Flat-pin connectors $1 \times 6,3 \mathrm{~mm}$ or $2 \times 2,8 \mathrm{~mm}$ to DIN 46244

Mounting

Panel mounting with two fixing clamps at top/bottom or right/left,
High-density mounting possible
Mounting position: uncritical
Weight: $\quad 0,27 \mathrm{~kg}$

Accessories delivered with the unit

Operating manual
Fixing clamps

GENERAL

Housing

$\begin{array}{ll}\text { Material: } & \begin{array}{l}\text { Makrolon } 9415 \\ \text { flame-retardant }\end{array} \\ \text { Flammability class: } & \text { UL 94 V0, self-extinguishing }\end{array}$
Plug-in module, inserted from the front

Safety test

Complies with EN 61010-1 (VDE 0411-1):
Overvoltage category II
Contamination class 2
Working voltage range 300 V
Protection class II

Certifications

Type-tested to DIN 3440 (applied for)
For use in:

- Heat generating plants with outflow temperatures up to $120^{\circ} \mathrm{C}$ to DIN 4751

Table 1 Thermocouples measuring ranges

Thermoelementtyp		Meßbereich		Genauigkeit	Auflösung (\varnothing)
L	$\mathrm{Fe}-\mathrm{CuNi}$ (DIN)	$-100 \ldots . .900^{\circ} \mathrm{C}$	$-148 \ldots 1652^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
J	Fe-CuNi	$-100 \ldots 1200^{\circ} \mathrm{C}$	$-148 \ldots 2192^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
K	$\mathrm{NiCr}-\mathrm{Ni}$	$-100 \ldots 1350{ }^{\circ} \mathrm{C}$	$-148 \ldots 2462^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
N	Nicrosil/Nisil	$-100 \ldots 1300^{\circ} \mathrm{C}$	-148... $2372^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
S	PtRh-Pt 10\%	$0 \ldots 1760^{\circ} \mathrm{C}$	$32 . .3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
R	PtRh-Pt 13\%	$0 . . .1760^{\circ} \mathrm{C}$	$32 . .3200^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,2 K
T	$\mathrm{Cu}-\mathrm{CuNi}$	$-200 \ldots . .400^{\circ} \mathrm{C}$	$-328 . . .752^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05 K
C	W5\%Re-W26\%Re	$0 . . .2315^{\circ} \mathrm{C}$	$32 . . .4199^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,4 K
D	W3\%Re-W25\%Re	$0 . . .2315^{\circ} \mathrm{C}$	$32 . .4199^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,4 K
E	$\mathrm{NiCr}-\mathrm{CuNi}$	$-100 \ldots 1000^{\circ} \mathrm{C}$	-148...1832 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1 K
B *	PtRh-Pt6\%	$0(100) \ldots .1820^{\circ} \mathrm{C}$	32(212)...3308 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,3 K

* Specifications valid for $100^{\circ} \mathrm{C}$

Table 2 Resistance transducer measuring ranges

Art	Meßstrom	Meßbereich		Genauigkeit	Auflösung (\varnothing)
Pt100	$0,2 \mathrm{~mA}$	$-200 . . .100^{\circ} \mathrm{C}$	$-140 \ldots 212^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0,1K
Pt100		$-200 . . .850^{\circ} \mathrm{C}$	$-140 \ldots 1562^{\circ} \mathrm{F}$	$\leq 1 \mathrm{~K}$	0,1K
Pt1000		$-200 . . .200^{\circ} \mathrm{C}$	$-140 \ldots 392^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,1K
KTY 11-6*		$-50 \ldots 150{ }^{\circ} \mathrm{C}$	-58...302 ${ }^{\circ} \mathrm{F}$	$\leq 2 \mathrm{~K}$	0,05K
Spezial		0... 4500		$\leq 0,1 \%$	0,01\%
Spezial		0... 450			
Poti		0... 160			
Poti		0... 450			
Poti		0... 1600			
Poti		0... 4500			

* Or special

Table 3 Current and voltage measuring ranges

Meßbereich	Eingangswiderstand	Genauigkeit	Auflösung (\varnothing)
$0-10$ Volt	$\approx 110 \mathrm{k} \Omega$	$\leq 0,1 \%$	$0,6 \mathrm{mV}$
$0-100 \mathrm{mV}$	$\geq 1 \mathrm{M} \Omega$	$\leq 0,1 \%$	$6 \mu \mathrm{~V}$
$0-20 \mathrm{~mA}$	$49 \Omega($ Spannungsbedarf $\leq 2,5 \mathrm{~V})$	$\leq 0,1 \%$	$1,5 \mu \mathrm{~A}$

11 Safety hints

This unit was built and tested in compliance with VDE 0411-1 / EN 61010-1 and was delivered in safe condition.
The unit complies with European guideline 89/336/EWG (EMC) and is provided with CE marking.
The unit was tested before delivery and has passed the tests required by the test schedule. To maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in this operating manual.
The unit is intended exclusively for use as a measurement and control instrument in technical installations.

Warning

If the unit is damaged to an extent that safe operation seems impossible, the unit must not be taken into operation.

ELECTRICAL CONNECTIONS

The electrical wiring must conform to local standards (e.g. VDE 0100). The input measurement and control leads must be kept separate from signal and power supply leads.
In the installation of the controller a switch or a circuit-breaker must be used and signified. The switch or circuit-breaker must be installed near by the controller and the user must have easy access to the controller.

COMMISSIONING

Before instrument switch-on, check that the following information is taken into account:

- Ensure that the supply voltage corresponds to the specifications on the type label.
- All covers required for contact protection must be fitted.
- If the controller is connected with other units in the same signal loop, check that the equipment in the output circuit is not affected before switch-on. If necessary, suitable protective measures must be taken.
- The unit may be operated only in installed condition.
- Before and during operation, the temperature restrictions specified for controller operation must be met.

SHUT-DOWN

For taking the unit out of operation, disconnect it from all voltage sources and protect it against accidental operation.
If the controller is connected with other equipment in the same signal loop, check that other equipment in the output circuit is not affected before switch-off. If necessary, suitable protective measures must be taken.

MAINTENANCE, REPAIR AND MODIFICATION

The units do not need particular maintenance.

Warning

When opening the units, or when removing covers or components, live parts and terminals may be exposed.

Before starting this work, the unit must be disconnected completely.

After completing this work, re-shut the unit and re-fit all covers and components. Check if specifications on the type label must be changed and correct them, if necessary.

Caution
When opening the units, components which are sensitive to electrostatic discharge (ESD) can be exposed. The following work may be done only at workstations with suitable ESD protection.
Modification, maintenance and repair work may be done only by trained and authorized personnel. For this purpose, the ACS service should be contacted.

4
The cleaning of the front of the controller should be done with a dry or a wetted (spirit, water) kerchief.

11.1 Resetting to factory setting

In case of faulty configuration, MIR-491 can be reset to the default condition. For this, keep the following two keys pressed during power-on :

Controller reset to default is signalled by displaying FRELary shortly in the display. Subsequently, the controller returns to normal operation.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72
Астана +7(7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56

Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35
Тверь (4822)63-31-35
Томск (3822) 98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

[^0]: Архангельск (8182)63-90-72
 Астана +7(7172)727-132
 Астрахань (8512)99-46-04
 Барнаул (3852)73-04-60
 Белгород (4722)40-23-64
 Брянск (4832)59-03-52
 Владивосток (423)249-28-31
 Волгоград (844)278-03-48
 Вологда (8172)26-41-59
 Воронеж (473)204-51-73
 Екатеринбург (343)384-55-89
 Иваново (4932)77-34-06
 Ижевск (3412)26-03-58
 Иркутск (395) 279-98-46

